Index: base/third_party/dmg_fp/dtoa.cc |
diff --git a/base/third_party/dmg_fp/dtoa.cc b/base/third_party/dmg_fp/dtoa.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..4f9f4fe2b89fc97cf0cfffd1575a9e0c3d89bdae |
--- /dev/null |
+++ b/base/third_party/dmg_fp/dtoa.cc |
@@ -0,0 +1,3356 @@ |
+/**************************************************************** |
+ * |
+ * The author of this software is David M. Gay. |
+ * |
+ * Copyright (c) 1991, 2000, 2001 by Lucent Technologies. |
+ * |
+ * Permission to use, copy, modify, and distribute this software for any |
+ * purpose without fee is hereby granted, provided that this entire notice |
+ * is included in all copies of any software which is or includes a copy |
+ * or modification of this software and in all copies of the supporting |
+ * documentation for such software. |
+ * |
+ * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED |
+ * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY |
+ * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY |
+ * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. |
+ * |
+ ***************************************************************/ |
+ |
+/* Please send bug reports to David M. Gay (dmg at acm dot org, |
+ * with " at " changed at "@" and " dot " changed to "."). */ |
+ |
+/* On a machine with IEEE extended-precision registers, it is |
+ * necessary to specify double-precision (53-bit) rounding precision |
+ * before invoking strtod or dtoa. If the machine uses (the equivalent |
+ * of) Intel 80x87 arithmetic, the call |
+ * _control87(PC_53, MCW_PC); |
+ * does this with many compilers. Whether this or another call is |
+ * appropriate depends on the compiler; for this to work, it may be |
+ * necessary to #include "float.h" or another system-dependent header |
+ * file. |
+ */ |
+ |
+/* strtod for IEEE-, VAX-, and IBM-arithmetic machines. |
+ * |
+ * This strtod returns a nearest machine number to the input decimal |
+ * string (or sets errno to ERANGE). With IEEE arithmetic, ties are |
+ * broken by the IEEE round-even rule. Otherwise ties are broken by |
+ * biased rounding (add half and chop). |
+ * |
+ * Inspired loosely by William D. Clinger's paper "How to Read Floating |
+ * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101]. |
+ * |
+ * Modifications: |
+ * |
+ * 1. We only require IEEE, IBM, or VAX double-precision |
+ * arithmetic (not IEEE double-extended). |
+ * 2. We get by with floating-point arithmetic in a case that |
+ * Clinger missed -- when we're computing d * 10^n |
+ * for a small integer d and the integer n is not too |
+ * much larger than 22 (the maximum integer k for which |
+ * we can represent 10^k exactly), we may be able to |
+ * compute (d*10^k) * 10^(e-k) with just one roundoff. |
+ * 3. Rather than a bit-at-a-time adjustment of the binary |
+ * result in the hard case, we use floating-point |
+ * arithmetic to determine the adjustment to within |
+ * one bit; only in really hard cases do we need to |
+ * compute a second residual. |
+ * 4. Because of 3., we don't need a large table of powers of 10 |
+ * for ten-to-e (just some small tables, e.g. of 10^k |
+ * for 0 <= k <= 22). |
+ */ |
+ |
+/* |
+ * #define IEEE_8087 for IEEE-arithmetic machines where the least |
+ * significant byte has the lowest address. |
+ * #define IEEE_MC68k for IEEE-arithmetic machines where the most |
+ * significant byte has the lowest address. |
+ * #define Long int on machines with 32-bit ints and 64-bit longs. |
+ * #define IBM for IBM mainframe-style floating-point arithmetic. |
+ * #define VAX for VAX-style floating-point arithmetic (D_floating). |
+ * #define No_leftright to omit left-right logic in fast floating-point |
+ * computation of dtoa. |
+ * #define Honor_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3 |
+ * and strtod and dtoa should round accordingly. Unless Trust_FLT_ROUNDS |
+ * is also #defined, fegetround() will be queried for the rounding mode. |
+ * Note that both FLT_ROUNDS and fegetround() are specified by the C99 |
+ * standard (and are specified to be consistent, with fesetround() |
+ * affecting the value of FLT_ROUNDS), but that some (Linux) systems |
+ * do not work correctly in this regard, so using fegetround() is more |
+ * portable than using FLT_FOUNDS directly. |
+ * #define Check_FLT_ROUNDS if FLT_ROUNDS can assume the values 2 or 3 |
+ * and Honor_FLT_ROUNDS is not #defined. |
+ * #define RND_PRODQUOT to use rnd_prod and rnd_quot (assembly routines |
+ * that use extended-precision instructions to compute rounded |
+ * products and quotients) with IBM. |
+ * #define ROUND_BIASED for IEEE-format with biased rounding. |
+ * #define Inaccurate_Divide for IEEE-format with correctly rounded |
+ * products but inaccurate quotients, e.g., for Intel i860. |
+ * #define NO_LONG_LONG on machines that do not have a "long long" |
+ * integer type (of >= 64 bits). On such machines, you can |
+ * #define Just_16 to store 16 bits per 32-bit Long when doing |
+ * high-precision integer arithmetic. Whether this speeds things |
+ * up or slows things down depends on the machine and the number |
+ * being converted. If long long is available and the name is |
+ * something other than "long long", #define Llong to be the name, |
+ * and if "unsigned Llong" does not work as an unsigned version of |
+ * Llong, #define #ULLong to be the corresponding unsigned type. |
+ * #define KR_headers for old-style C function headers. |
+ * #define Bad_float_h if your system lacks a float.h or if it does not |
+ * define some or all of DBL_DIG, DBL_MAX_10_EXP, DBL_MAX_EXP, |
+ * FLT_RADIX, FLT_ROUNDS, and DBL_MAX. |
+ * #define MALLOC your_malloc, where your_malloc(n) acts like malloc(n) |
+ * if memory is available and otherwise does something you deem |
+ * appropriate. If MALLOC is undefined, malloc will be invoked |
+ * directly -- and assumed always to succeed. |
+ * #define Omit_Private_Memory to omit logic (added Jan. 1998) for making |
+ * memory allocations from a private pool of memory when possible. |
+ * When used, the private pool is PRIVATE_MEM bytes long: 2304 bytes, |
+ * unless #defined to be a different length. This default length |
+ * suffices to get rid of MALLOC calls except for unusual cases, |
+ * such as decimal-to-binary conversion of a very long string of |
+ * digits. The longest string dtoa can return is about 751 bytes |
+ * long. For conversions by strtod of strings of 800 digits and |
+ * all dtoa conversions in single-threaded executions with 8-byte |
+ * pointers, PRIVATE_MEM >= 7400 appears to suffice; with 4-byte |
+ * pointers, PRIVATE_MEM >= 7112 appears adequate. |
+ * #define NO_INFNAN_CHECK if you do not wish to have INFNAN_CHECK |
+ * #defined automatically on IEEE systems. On such systems, |
+ * when INFNAN_CHECK is #defined, strtod checks |
+ * for Infinity and NaN (case insensitively). On some systems |
+ * (e.g., some HP systems), it may be necessary to #define NAN_WORD0 |
+ * appropriately -- to the most significant word of a quiet NaN. |
+ * (On HP Series 700/800 machines, -DNAN_WORD0=0x7ff40000 works.) |
+ * When INFNAN_CHECK is #defined and No_Hex_NaN is not #defined, |
+ * strtod also accepts (case insensitively) strings of the form |
+ * NaN(x), where x is a string of hexadecimal digits and spaces; |
+ * if there is only one string of hexadecimal digits, it is taken |
+ * for the 52 fraction bits of the resulting NaN; if there are two |
+ * or more strings of hex digits, the first is for the high 20 bits, |
+ * the second and subsequent for the low 32 bits, with intervening |
+ * white space ignored; but if this results in none of the 52 |
+ * fraction bits being on (an IEEE Infinity symbol), then NAN_WORD0 |
+ * and NAN_WORD1 are used instead. |
+ * #define MULTIPLE_THREADS if the system offers preemptively scheduled |
+ * multiple threads. In this case, you must provide (or suitably |
+ * #define) two locks, acquired by ACQUIRE_DTOA_LOCK(n) and freed |
+ * by FREE_DTOA_LOCK(n) for n = 0 or 1. (The second lock, accessed |
+ * in pow5mult, ensures lazy evaluation of only one copy of high |
+ * powers of 5; omitting this lock would introduce a small |
+ * probability of wasting memory, but would otherwise be harmless.) |
+ * You must also invoke freedtoa(s) to free the value s returned by |
+ * dtoa. You may do so whether or not MULTIPLE_THREADS is #defined. |
+ * #define NO_IEEE_Scale to disable new (Feb. 1997) logic in strtod that |
+ * avoids underflows on inputs whose result does not underflow. |
+ * If you #define NO_IEEE_Scale on a machine that uses IEEE-format |
+ * floating-point numbers and flushes underflows to zero rather |
+ * than implementing gradual underflow, then you must also #define |
+ * Sudden_Underflow. |
+ * #define YES_ALIAS to permit aliasing certain double values with |
+ * arrays of ULongs. This leads to slightly better code with |
+ * some compilers and was always used prior to 19990916, but it |
+ * is not strictly legal and can cause trouble with aggressively |
+ * optimizing compilers (e.g., gcc 2.95.1 under -O2). |
+ * #define USE_LOCALE to use the current locale's decimal_point value. |
+ * #define SET_INEXACT if IEEE arithmetic is being used and extra |
+ * computation should be done to set the inexact flag when the |
+ * result is inexact and avoid setting inexact when the result |
+ * is exact. In this case, dtoa.c must be compiled in |
+ * an environment, perhaps provided by #include "dtoa.c" in a |
+ * suitable wrapper, that defines two functions, |
+ * int get_inexact(void); |
+ * void clear_inexact(void); |
+ * such that get_inexact() returns a nonzero value if the |
+ * inexact bit is already set, and clear_inexact() sets the |
+ * inexact bit to 0. When SET_INEXACT is #defined, strtod |
+ * also does extra computations to set the underflow and overflow |
+ * flags when appropriate (i.e., when the result is tiny and |
+ * inexact or when it is a numeric value rounded to +-infinity). |
+ * #define NO_ERRNO if strtod should not assign errno = ERANGE when |
+ * the result overflows to +-Infinity or underflows to 0. |
+ */ |
+ |
+#define IEEE_8087 |
+ |
+#ifndef Long |
+#define Long long |
+#endif |
+#ifndef ULong |
+typedef unsigned Long ULong; |
+#endif |
+ |
+#ifdef DEBUG |
+#include "stdio.h" |
+#define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);} |
+#endif |
+ |
+#include "stdlib.h" |
+#include "string.h" |
+ |
+#ifdef USE_LOCALE |
+#include "locale.h" |
+#endif |
+ |
+#ifdef MALLOC |
+#ifdef KR_headers |
+extern char *MALLOC(); |
+#else |
+extern void *MALLOC(size_t); |
+#endif |
+#else |
+#define MALLOC malloc |
+#endif |
+ |
+#ifndef Omit_Private_Memory |
+#ifndef PRIVATE_MEM |
+#define PRIVATE_MEM 2304 |
+#endif |
+#define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double)) |
+static double private_mem[PRIVATE_mem], *pmem_next = private_mem; |
+#endif |
+ |
+#undef IEEE_Arith |
+#undef Avoid_Underflow |
+#ifdef IEEE_MC68k |
+#define IEEE_Arith |
+#endif |
+#ifdef IEEE_8087 |
+#define IEEE_Arith |
+#endif |
+ |
+#ifdef IEEE_Arith |
+#ifndef NO_INFNAN_CHECK |
+#undef INFNAN_CHECK |
+#define INFNAN_CHECK |
+#endif |
+#else |
+#undef INFNAN_CHECK |
+#endif |
+ |
+#include "errno.h" |
+ |
+#ifdef Bad_float_h |
+ |
+#ifdef IEEE_Arith |
+#define DBL_DIG 15 |
+#define DBL_MAX_10_EXP 308 |
+#define DBL_MAX_EXP 1024 |
+#define FLT_RADIX 2 |
+#endif /*IEEE_Arith*/ |
+ |
+#ifdef IBM |
+#define DBL_DIG 16 |
+#define DBL_MAX_10_EXP 75 |
+#define DBL_MAX_EXP 63 |
+#define FLT_RADIX 16 |
+#define DBL_MAX 7.2370055773322621e+75 |
+#endif |
+ |
+#ifdef VAX |
+#define DBL_DIG 16 |
+#define DBL_MAX_10_EXP 38 |
+#define DBL_MAX_EXP 127 |
+#define FLT_RADIX 2 |
+#define DBL_MAX 1.7014118346046923e+38 |
+#endif |
+ |
+#ifndef LONG_MAX |
+#define LONG_MAX 2147483647 |
+#endif |
+ |
+#else /* ifndef Bad_float_h */ |
+#include "float.h" |
+#endif /* Bad_float_h */ |
+ |
+#ifndef __MATH_H__ |
+#include "math.h" |
+#endif |
+ |
+namespace dmg_fp { |
+ |
+#ifndef CONST |
+#ifdef KR_headers |
+#define CONST /* blank */ |
+#else |
+#define CONST const |
+#endif |
+#endif |
+ |
+#if defined(IEEE_8087) + defined(IEEE_MC68k) + defined(VAX) + defined(IBM) != 1 |
+Exactly one of IEEE_8087, IEEE_MC68k, VAX, or IBM should be defined. |
+#endif |
+ |
+typedef union { double d; ULong L[2]; } U; |
+ |
+#ifdef YES_ALIAS |
+#define dval(x) x |
+#ifdef IEEE_8087 |
+#define word0(x) ((ULong *)&x)[1] |
+#define word1(x) ((ULong *)&x)[0] |
+#else |
+#define word0(x) ((ULong *)&x)[0] |
+#define word1(x) ((ULong *)&x)[1] |
+#endif |
+#else |
+#ifdef IEEE_8087 |
+#define word0(x) ((U*)&x)->L[1] |
+#define word1(x) ((U*)&x)->L[0] |
+#else |
+#define word0(x) ((U*)&x)->L[0] |
+#define word1(x) ((U*)&x)->L[1] |
+#endif |
+#define dval(x) ((U*)&x)->d |
+#endif |
+ |
+/* The following definition of Storeinc is appropriate for MIPS processors. |
+ * An alternative that might be better on some machines is |
+ * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff) |
+ */ |
+#if defined(IEEE_8087) + defined(VAX) |
+#define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \ |
+((unsigned short *)a)[0] = (unsigned short)c, a++) |
+#else |
+#define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \ |
+((unsigned short *)a)[1] = (unsigned short)c, a++) |
+#endif |
+ |
+/* #define P DBL_MANT_DIG */ |
+/* Ten_pmax = floor(P*log(2)/log(5)) */ |
+/* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */ |
+/* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */ |
+/* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */ |
+ |
+#ifdef IEEE_Arith |
+#define Exp_shift 20 |
+#define Exp_shift1 20 |
+#define Exp_msk1 0x100000 |
+#define Exp_msk11 0x100000 |
+#define Exp_mask 0x7ff00000 |
+#define P 53 |
+#define Bias 1023 |
+#define Emin (-1022) |
+#define Exp_1 0x3ff00000 |
+#define Exp_11 0x3ff00000 |
+#define Ebits 11 |
+#define Frac_mask 0xfffff |
+#define Frac_mask1 0xfffff |
+#define Ten_pmax 22 |
+#define Bletch 0x10 |
+#define Bndry_mask 0xfffff |
+#define Bndry_mask1 0xfffff |
+#define LSB 1 |
+#define Sign_bit 0x80000000 |
+#define Log2P 1 |
+#define Tiny0 0 |
+#define Tiny1 1 |
+#define Quick_max 14 |
+#define Int_max 14 |
+#ifndef NO_IEEE_Scale |
+#define Avoid_Underflow |
+#ifdef Flush_Denorm /* debugging option */ |
+#undef Sudden_Underflow |
+#endif |
+#endif |
+ |
+#ifndef Flt_Rounds |
+#ifdef FLT_ROUNDS |
+#define Flt_Rounds FLT_ROUNDS |
+#else |
+#define Flt_Rounds 1 |
+#endif |
+#endif /*Flt_Rounds*/ |
+ |
+#ifdef Honor_FLT_ROUNDS |
+#undef Check_FLT_ROUNDS |
+#define Check_FLT_ROUNDS |
+#else |
+#define Rounding Flt_Rounds |
+#endif |
+ |
+#else /* ifndef IEEE_Arith */ |
+#undef Check_FLT_ROUNDS |
+#undef Honor_FLT_ROUNDS |
+#undef SET_INEXACT |
+#undef Sudden_Underflow |
+#define Sudden_Underflow |
+#ifdef IBM |
+#undef Flt_Rounds |
+#define Flt_Rounds 0 |
+#define Exp_shift 24 |
+#define Exp_shift1 24 |
+#define Exp_msk1 0x1000000 |
+#define Exp_msk11 0x1000000 |
+#define Exp_mask 0x7f000000 |
+#define P 14 |
+#define Bias 65 |
+#define Exp_1 0x41000000 |
+#define Exp_11 0x41000000 |
+#define Ebits 8 /* exponent has 7 bits, but 8 is the right value in b2d */ |
+#define Frac_mask 0xffffff |
+#define Frac_mask1 0xffffff |
+#define Bletch 4 |
+#define Ten_pmax 22 |
+#define Bndry_mask 0xefffff |
+#define Bndry_mask1 0xffffff |
+#define LSB 1 |
+#define Sign_bit 0x80000000 |
+#define Log2P 4 |
+#define Tiny0 0x100000 |
+#define Tiny1 0 |
+#define Quick_max 14 |
+#define Int_max 15 |
+#else /* VAX */ |
+#undef Flt_Rounds |
+#define Flt_Rounds 1 |
+#define Exp_shift 23 |
+#define Exp_shift1 7 |
+#define Exp_msk1 0x80 |
+#define Exp_msk11 0x800000 |
+#define Exp_mask 0x7f80 |
+#define P 56 |
+#define Bias 129 |
+#define Exp_1 0x40800000 |
+#define Exp_11 0x4080 |
+#define Ebits 8 |
+#define Frac_mask 0x7fffff |
+#define Frac_mask1 0xffff007f |
+#define Ten_pmax 24 |
+#define Bletch 2 |
+#define Bndry_mask 0xffff007f |
+#define Bndry_mask1 0xffff007f |
+#define LSB 0x10000 |
+#define Sign_bit 0x8000 |
+#define Log2P 1 |
+#define Tiny0 0x80 |
+#define Tiny1 0 |
+#define Quick_max 15 |
+#define Int_max 15 |
+#endif /* IBM, VAX */ |
+#endif /* IEEE_Arith */ |
+ |
+#ifndef IEEE_Arith |
+#define ROUND_BIASED |
+#endif |
+ |
+#ifdef RND_PRODQUOT |
+#define rounded_product(a,b) a = rnd_prod(a, b) |
+#define rounded_quotient(a,b) a = rnd_quot(a, b) |
+#ifdef KR_headers |
+extern double rnd_prod(), rnd_quot(); |
+#else |
+extern double rnd_prod(double, double), rnd_quot(double, double); |
+#endif |
+#else |
+#define rounded_product(a,b) a *= b |
+#define rounded_quotient(a,b) a /= b |
+#endif |
+ |
+#define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1)) |
+#define Big1 0xffffffff |
+ |
+#ifndef Pack_32 |
+#define Pack_32 |
+#endif |
+ |
+#ifdef KR_headers |
+#define FFFFFFFF ((((unsigned long)0xffff)<<16)|(unsigned long)0xffff) |
+#else |
+#define FFFFFFFF 0xffffffffUL |
+#endif |
+ |
+#ifdef NO_LONG_LONG |
+#undef ULLong |
+#ifdef Just_16 |
+#undef Pack_32 |
+/* When Pack_32 is not defined, we store 16 bits per 32-bit Long. |
+ * This makes some inner loops simpler and sometimes saves work |
+ * during multiplications, but it often seems to make things slightly |
+ * slower. Hence the default is now to store 32 bits per Long. |
+ */ |
+#endif |
+#else /* long long available */ |
+#ifndef Llong |
+#define Llong long long |
+#endif |
+#ifndef ULLong |
+#define ULLong unsigned Llong |
+#endif |
+#endif /* NO_LONG_LONG */ |
+ |
+#ifndef MULTIPLE_THREADS |
+#define ACQUIRE_DTOA_LOCK(n) /*nothing*/ |
+#define FREE_DTOA_LOCK(n) /*nothing*/ |
+#endif |
+ |
+#define Kmax 15 |
+ |
+double strtod(const char *s00, char **se); |
+char *dtoa(double d, int mode, int ndigits, |
+ int *decpt, int *sign, char **rve); |
+ |
+ struct |
+Bigint { |
+ struct Bigint *next; |
+ int k, maxwds, sign, wds; |
+ ULong x[1]; |
+ }; |
+ |
+ typedef struct Bigint Bigint; |
+ |
+ static Bigint *freelist[Kmax+1]; |
+ |
+ static Bigint * |
+Balloc |
+#ifdef KR_headers |
+ (k) int k; |
+#else |
+ (int k) |
+#endif |
+{ |
+ int x; |
+ Bigint *rv; |
+#ifndef Omit_Private_Memory |
+ unsigned int len; |
+#endif |
+ |
+ ACQUIRE_DTOA_LOCK(0); |
+ if (rv = freelist[k]) { |
+ freelist[k] = rv->next; |
+ } |
+ else { |
+ x = 1 << k; |
+#ifdef Omit_Private_Memory |
+ rv = (Bigint *)MALLOC(sizeof(Bigint) + (x-1)*sizeof(ULong)); |
+#else |
+ len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1) |
+ /sizeof(double); |
+ if (pmem_next - private_mem + len <= PRIVATE_mem) { |
+ rv = (Bigint*)pmem_next; |
+ pmem_next += len; |
+ } |
+ else |
+ rv = (Bigint*)MALLOC(len*sizeof(double)); |
+#endif |
+ rv->k = k; |
+ rv->maxwds = x; |
+ } |
+ FREE_DTOA_LOCK(0); |
+ rv->sign = rv->wds = 0; |
+ return rv; |
+ } |
+ |
+ static void |
+Bfree |
+#ifdef KR_headers |
+ (v) Bigint *v; |
+#else |
+ (Bigint *v) |
+#endif |
+{ |
+ if (v) { |
+ ACQUIRE_DTOA_LOCK(0); |
+ v->next = freelist[v->k]; |
+ freelist[v->k] = v; |
+ FREE_DTOA_LOCK(0); |
+ } |
+ } |
+ |
+#define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \ |
+y->wds*sizeof(Long) + 2*sizeof(int)) |
+ |
+ static Bigint * |
+multadd |
+#ifdef KR_headers |
+ (b, m, a) Bigint *b; int m, a; |
+#else |
+ (Bigint *b, int m, int a) /* multiply by m and add a */ |
+#endif |
+{ |
+ int i, wds; |
+#ifdef ULLong |
+ ULong *x; |
+ ULLong carry, y; |
+#else |
+ ULong carry, *x, y; |
+#ifdef Pack_32 |
+ ULong xi, z; |
+#endif |
+#endif |
+ Bigint *b1; |
+ |
+ wds = b->wds; |
+ x = b->x; |
+ i = 0; |
+ carry = a; |
+ do { |
+#ifdef ULLong |
+ y = *x * (ULLong)m + carry; |
+ carry = y >> 32; |
+ *x++ = y & FFFFFFFF; |
+#else |
+#ifdef Pack_32 |
+ xi = *x; |
+ y = (xi & 0xffff) * m + carry; |
+ z = (xi >> 16) * m + (y >> 16); |
+ carry = z >> 16; |
+ *x++ = (z << 16) + (y & 0xffff); |
+#else |
+ y = *x * m + carry; |
+ carry = y >> 16; |
+ *x++ = y & 0xffff; |
+#endif |
+#endif |
+ } |
+ while(++i < wds); |
+ if (carry) { |
+ if (wds >= b->maxwds) { |
+ b1 = Balloc(b->k+1); |
+ Bcopy(b1, b); |
+ Bfree(b); |
+ b = b1; |
+ } |
+ b->x[wds++] = carry; |
+ b->wds = wds; |
+ } |
+ return b; |
+ } |
+ |
+ static Bigint * |
+s2b |
+#ifdef KR_headers |
+ (s, nd0, nd, y9) CONST char *s; int nd0, nd; ULong y9; |
+#else |
+ (CONST char *s, int nd0, int nd, ULong y9) |
+#endif |
+{ |
+ Bigint *b; |
+ int i, k; |
+ Long x, y; |
+ |
+ x = (nd + 8) / 9; |
+ for(k = 0, y = 1; x > y; y <<= 1, k++) ; |
+#ifdef Pack_32 |
+ b = Balloc(k); |
+ b->x[0] = y9; |
+ b->wds = 1; |
+#else |
+ b = Balloc(k+1); |
+ b->x[0] = y9 & 0xffff; |
+ b->wds = (b->x[1] = y9 >> 16) ? 2 : 1; |
+#endif |
+ |
+ i = 9; |
+ if (9 < nd0) { |
+ s += 9; |
+ do b = multadd(b, 10, *s++ - '0'); |
+ while(++i < nd0); |
+ s++; |
+ } |
+ else |
+ s += 10; |
+ for(; i < nd; i++) |
+ b = multadd(b, 10, *s++ - '0'); |
+ return b; |
+ } |
+ |
+ static int |
+hi0bits |
+#ifdef KR_headers |
+ (x) register ULong x; |
+#else |
+ (register ULong x) |
+#endif |
+{ |
+ register int k = 0; |
+ |
+ if (!(x & 0xffff0000)) { |
+ k = 16; |
+ x <<= 16; |
+ } |
+ if (!(x & 0xff000000)) { |
+ k += 8; |
+ x <<= 8; |
+ } |
+ if (!(x & 0xf0000000)) { |
+ k += 4; |
+ x <<= 4; |
+ } |
+ if (!(x & 0xc0000000)) { |
+ k += 2; |
+ x <<= 2; |
+ } |
+ if (!(x & 0x80000000)) { |
+ k++; |
+ if (!(x & 0x40000000)) |
+ return 32; |
+ } |
+ return k; |
+ } |
+ |
+ static int |
+lo0bits |
+#ifdef KR_headers |
+ (y) ULong *y; |
+#else |
+ (ULong *y) |
+#endif |
+{ |
+ register int k; |
+ register ULong x = *y; |
+ |
+ if (x & 7) { |
+ if (x & 1) |
+ return 0; |
+ if (x & 2) { |
+ *y = x >> 1; |
+ return 1; |
+ } |
+ *y = x >> 2; |
+ return 2; |
+ } |
+ k = 0; |
+ if (!(x & 0xffff)) { |
+ k = 16; |
+ x >>= 16; |
+ } |
+ if (!(x & 0xff)) { |
+ k += 8; |
+ x >>= 8; |
+ } |
+ if (!(x & 0xf)) { |
+ k += 4; |
+ x >>= 4; |
+ } |
+ if (!(x & 0x3)) { |
+ k += 2; |
+ x >>= 2; |
+ } |
+ if (!(x & 1)) { |
+ k++; |
+ x >>= 1; |
+ if (!x) |
+ return 32; |
+ } |
+ *y = x; |
+ return k; |
+ } |
+ |
+ static Bigint * |
+i2b |
+#ifdef KR_headers |
+ (i) int i; |
+#else |
+ (int i) |
+#endif |
+{ |
+ Bigint *b; |
+ |
+ b = Balloc(1); |
+ b->x[0] = i; |
+ b->wds = 1; |
+ return b; |
+ } |
+ |
+ static Bigint * |
+mult |
+#ifdef KR_headers |
+ (a, b) Bigint *a, *b; |
+#else |
+ (Bigint *a, Bigint *b) |
+#endif |
+{ |
+ Bigint *c; |
+ int k, wa, wb, wc; |
+ ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0; |
+ ULong y; |
+#ifdef ULLong |
+ ULLong carry, z; |
+#else |
+ ULong carry, z; |
+#ifdef Pack_32 |
+ ULong z2; |
+#endif |
+#endif |
+ |
+ if (a->wds < b->wds) { |
+ c = a; |
+ a = b; |
+ b = c; |
+ } |
+ k = a->k; |
+ wa = a->wds; |
+ wb = b->wds; |
+ wc = wa + wb; |
+ if (wc > a->maxwds) |
+ k++; |
+ c = Balloc(k); |
+ for(x = c->x, xa = x + wc; x < xa; x++) |
+ *x = 0; |
+ xa = a->x; |
+ xae = xa + wa; |
+ xb = b->x; |
+ xbe = xb + wb; |
+ xc0 = c->x; |
+#ifdef ULLong |
+ for(; xb < xbe; xc0++) { |
+ if (y = *xb++) { |
+ x = xa; |
+ xc = xc0; |
+ carry = 0; |
+ do { |
+ z = *x++ * (ULLong)y + *xc + carry; |
+ carry = z >> 32; |
+ *xc++ = z & FFFFFFFF; |
+ } |
+ while(x < xae); |
+ *xc = carry; |
+ } |
+ } |
+#else |
+#ifdef Pack_32 |
+ for(; xb < xbe; xb++, xc0++) { |
+ if (y = *xb & 0xffff) { |
+ x = xa; |
+ xc = xc0; |
+ carry = 0; |
+ do { |
+ z = (*x & 0xffff) * y + (*xc & 0xffff) + carry; |
+ carry = z >> 16; |
+ z2 = (*x++ >> 16) * y + (*xc >> 16) + carry; |
+ carry = z2 >> 16; |
+ Storeinc(xc, z2, z); |
+ } |
+ while(x < xae); |
+ *xc = carry; |
+ } |
+ if (y = *xb >> 16) { |
+ x = xa; |
+ xc = xc0; |
+ carry = 0; |
+ z2 = *xc; |
+ do { |
+ z = (*x & 0xffff) * y + (*xc >> 16) + carry; |
+ carry = z >> 16; |
+ Storeinc(xc, z, z2); |
+ z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry; |
+ carry = z2 >> 16; |
+ } |
+ while(x < xae); |
+ *xc = z2; |
+ } |
+ } |
+#else |
+ for(; xb < xbe; xc0++) { |
+ if (y = *xb++) { |
+ x = xa; |
+ xc = xc0; |
+ carry = 0; |
+ do { |
+ z = *x++ * y + *xc + carry; |
+ carry = z >> 16; |
+ *xc++ = z & 0xffff; |
+ } |
+ while(x < xae); |
+ *xc = carry; |
+ } |
+ } |
+#endif |
+#endif |
+ for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ; |
+ c->wds = wc; |
+ return c; |
+ } |
+ |
+ static Bigint *p5s; |
+ |
+ static Bigint * |
+pow5mult |
+#ifdef KR_headers |
+ (b, k) Bigint *b; int k; |
+#else |
+ (Bigint *b, int k) |
+#endif |
+{ |
+ Bigint *b1, *p5, *p51; |
+ int i; |
+ static int p05[3] = { 5, 25, 125 }; |
+ |
+ if (i = k & 3) |
+ b = multadd(b, p05[i-1], 0); |
+ |
+ if (!(k >>= 2)) |
+ return b; |
+ if (!(p5 = p5s)) { |
+ /* first time */ |
+#ifdef MULTIPLE_THREADS |
+ ACQUIRE_DTOA_LOCK(1); |
+ if (!(p5 = p5s)) { |
+ p5 = p5s = i2b(625); |
+ p5->next = 0; |
+ } |
+ FREE_DTOA_LOCK(1); |
+#else |
+ p5 = p5s = i2b(625); |
+ p5->next = 0; |
+#endif |
+ } |
+ for(;;) { |
+ if (k & 1) { |
+ b1 = mult(b, p5); |
+ Bfree(b); |
+ b = b1; |
+ } |
+ if (!(k >>= 1)) |
+ break; |
+ if (!(p51 = p5->next)) { |
+#ifdef MULTIPLE_THREADS |
+ ACQUIRE_DTOA_LOCK(1); |
+ if (!(p51 = p5->next)) { |
+ p51 = p5->next = mult(p5,p5); |
+ p51->next = 0; |
+ } |
+ FREE_DTOA_LOCK(1); |
+#else |
+ p51 = p5->next = mult(p5,p5); |
+ p51->next = 0; |
+#endif |
+ } |
+ p5 = p51; |
+ } |
+ return b; |
+ } |
+ |
+ static Bigint * |
+lshift |
+#ifdef KR_headers |
+ (b, k) Bigint *b; int k; |
+#else |
+ (Bigint *b, int k) |
+#endif |
+{ |
+ int i, k1, n, n1; |
+ Bigint *b1; |
+ ULong *x, *x1, *xe, z; |
+ |
+#ifdef Pack_32 |
+ n = k >> 5; |
+#else |
+ n = k >> 4; |
+#endif |
+ k1 = b->k; |
+ n1 = n + b->wds + 1; |
+ for(i = b->maxwds; n1 > i; i <<= 1) |
+ k1++; |
+ b1 = Balloc(k1); |
+ x1 = b1->x; |
+ for(i = 0; i < n; i++) |
+ *x1++ = 0; |
+ x = b->x; |
+ xe = x + b->wds; |
+#ifdef Pack_32 |
+ if (k &= 0x1f) { |
+ k1 = 32 - k; |
+ z = 0; |
+ do { |
+ *x1++ = *x << k | z; |
+ z = *x++ >> k1; |
+ } |
+ while(x < xe); |
+ if (*x1 = z) |
+ ++n1; |
+ } |
+#else |
+ if (k &= 0xf) { |
+ k1 = 16 - k; |
+ z = 0; |
+ do { |
+ *x1++ = *x << k & 0xffff | z; |
+ z = *x++ >> k1; |
+ } |
+ while(x < xe); |
+ if (*x1 = z) |
+ ++n1; |
+ } |
+#endif |
+ else do |
+ *x1++ = *x++; |
+ while(x < xe); |
+ b1->wds = n1 - 1; |
+ Bfree(b); |
+ return b1; |
+ } |
+ |
+ static int |
+cmp |
+#ifdef KR_headers |
+ (a, b) Bigint *a, *b; |
+#else |
+ (Bigint *a, Bigint *b) |
+#endif |
+{ |
+ ULong *xa, *xa0, *xb, *xb0; |
+ int i, j; |
+ |
+ i = a->wds; |
+ j = b->wds; |
+#ifdef DEBUG |
+ if (i > 1 && !a->x[i-1]) |
+ Bug("cmp called with a->x[a->wds-1] == 0"); |
+ if (j > 1 && !b->x[j-1]) |
+ Bug("cmp called with b->x[b->wds-1] == 0"); |
+#endif |
+ if (i -= j) |
+ return i; |
+ xa0 = a->x; |
+ xa = xa0 + j; |
+ xb0 = b->x; |
+ xb = xb0 + j; |
+ for(;;) { |
+ if (*--xa != *--xb) |
+ return *xa < *xb ? -1 : 1; |
+ if (xa <= xa0) |
+ break; |
+ } |
+ return 0; |
+ } |
+ |
+ static Bigint * |
+diff |
+#ifdef KR_headers |
+ (a, b) Bigint *a, *b; |
+#else |
+ (Bigint *a, Bigint *b) |
+#endif |
+{ |
+ Bigint *c; |
+ int i, wa, wb; |
+ ULong *xa, *xae, *xb, *xbe, *xc; |
+#ifdef ULLong |
+ ULLong borrow, y; |
+#else |
+ ULong borrow, y; |
+#ifdef Pack_32 |
+ ULong z; |
+#endif |
+#endif |
+ |
+ i = cmp(a,b); |
+ if (!i) { |
+ c = Balloc(0); |
+ c->wds = 1; |
+ c->x[0] = 0; |
+ return c; |
+ } |
+ if (i < 0) { |
+ c = a; |
+ a = b; |
+ b = c; |
+ i = 1; |
+ } |
+ else |
+ i = 0; |
+ c = Balloc(a->k); |
+ c->sign = i; |
+ wa = a->wds; |
+ xa = a->x; |
+ xae = xa + wa; |
+ wb = b->wds; |
+ xb = b->x; |
+ xbe = xb + wb; |
+ xc = c->x; |
+ borrow = 0; |
+#ifdef ULLong |
+ do { |
+ y = (ULLong)*xa++ - *xb++ - borrow; |
+ borrow = y >> 32 & (ULong)1; |
+ *xc++ = y & FFFFFFFF; |
+ } |
+ while(xb < xbe); |
+ while(xa < xae) { |
+ y = *xa++ - borrow; |
+ borrow = y >> 32 & (ULong)1; |
+ *xc++ = y & FFFFFFFF; |
+ } |
+#else |
+#ifdef Pack_32 |
+ do { |
+ y = (*xa & 0xffff) - (*xb & 0xffff) - borrow; |
+ borrow = (y & 0x10000) >> 16; |
+ z = (*xa++ >> 16) - (*xb++ >> 16) - borrow; |
+ borrow = (z & 0x10000) >> 16; |
+ Storeinc(xc, z, y); |
+ } |
+ while(xb < xbe); |
+ while(xa < xae) { |
+ y = (*xa & 0xffff) - borrow; |
+ borrow = (y & 0x10000) >> 16; |
+ z = (*xa++ >> 16) - borrow; |
+ borrow = (z & 0x10000) >> 16; |
+ Storeinc(xc, z, y); |
+ } |
+#else |
+ do { |
+ y = *xa++ - *xb++ - borrow; |
+ borrow = (y & 0x10000) >> 16; |
+ *xc++ = y & 0xffff; |
+ } |
+ while(xb < xbe); |
+ while(xa < xae) { |
+ y = *xa++ - borrow; |
+ borrow = (y & 0x10000) >> 16; |
+ *xc++ = y & 0xffff; |
+ } |
+#endif |
+#endif |
+ while(!*--xc) |
+ wa--; |
+ c->wds = wa; |
+ return c; |
+ } |
+ |
+ static double |
+ulp |
+#ifdef KR_headers |
+ (x) double x; |
+#else |
+ (double x) |
+#endif |
+{ |
+ register Long L; |
+ double a; |
+ |
+ L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1; |
+#ifndef Avoid_Underflow |
+#ifndef Sudden_Underflow |
+ if (L > 0) { |
+#endif |
+#endif |
+#ifdef IBM |
+ L |= Exp_msk1 >> 4; |
+#endif |
+ word0(a) = L; |
+ word1(a) = 0; |
+#ifndef Avoid_Underflow |
+#ifndef Sudden_Underflow |
+ } |
+ else { |
+ L = -L >> Exp_shift; |
+ if (L < Exp_shift) { |
+ word0(a) = 0x80000 >> L; |
+ word1(a) = 0; |
+ } |
+ else { |
+ word0(a) = 0; |
+ L -= Exp_shift; |
+ word1(a) = L >= 31 ? 1 : 1 << 31 - L; |
+ } |
+ } |
+#endif |
+#endif |
+ return dval(a); |
+ } |
+ |
+ static double |
+b2d |
+#ifdef KR_headers |
+ (a, e) Bigint *a; int *e; |
+#else |
+ (Bigint *a, int *e) |
+#endif |
+{ |
+ ULong *xa, *xa0, w, y, z; |
+ int k; |
+ double d; |
+#ifdef VAX |
+ ULong d0, d1; |
+#else |
+#define d0 word0(d) |
+#define d1 word1(d) |
+#endif |
+ |
+ xa0 = a->x; |
+ xa = xa0 + a->wds; |
+ y = *--xa; |
+#ifdef DEBUG |
+ if (!y) Bug("zero y in b2d"); |
+#endif |
+ k = hi0bits(y); |
+ *e = 32 - k; |
+#ifdef Pack_32 |
+ if (k < Ebits) { |
+ d0 = Exp_1 | y >> Ebits - k; |
+ w = xa > xa0 ? *--xa : 0; |
+ d1 = y << (32-Ebits) + k | w >> Ebits - k; |
+ goto ret_d; |
+ } |
+ z = xa > xa0 ? *--xa : 0; |
+ if (k -= Ebits) { |
+ d0 = Exp_1 | y << k | z >> 32 - k; |
+ y = xa > xa0 ? *--xa : 0; |
+ d1 = z << k | y >> 32 - k; |
+ } |
+ else { |
+ d0 = Exp_1 | y; |
+ d1 = z; |
+ } |
+#else |
+ if (k < Ebits + 16) { |
+ z = xa > xa0 ? *--xa : 0; |
+ d0 = Exp_1 | y << k - Ebits | z >> Ebits + 16 - k; |
+ w = xa > xa0 ? *--xa : 0; |
+ y = xa > xa0 ? *--xa : 0; |
+ d1 = z << k + 16 - Ebits | w << k - Ebits | y >> 16 + Ebits - k; |
+ goto ret_d; |
+ } |
+ z = xa > xa0 ? *--xa : 0; |
+ w = xa > xa0 ? *--xa : 0; |
+ k -= Ebits + 16; |
+ d0 = Exp_1 | y << k + 16 | z << k | w >> 16 - k; |
+ y = xa > xa0 ? *--xa : 0; |
+ d1 = w << k + 16 | y << k; |
+#endif |
+ ret_d: |
+#ifdef VAX |
+ word0(d) = d0 >> 16 | d0 << 16; |
+ word1(d) = d1 >> 16 | d1 << 16; |
+#else |
+#undef d0 |
+#undef d1 |
+#endif |
+ return dval(d); |
+ } |
+ |
+ static Bigint * |
+d2b |
+#ifdef KR_headers |
+ (d, e, bits) double d; int *e, *bits; |
+#else |
+ (double d, int *e, int *bits) |
+#endif |
+{ |
+ Bigint *b; |
+ int de, k; |
+ ULong *x, y, z; |
+#ifndef Sudden_Underflow |
+ int i; |
+#endif |
+#ifdef VAX |
+ ULong d0, d1; |
+ d0 = word0(d) >> 16 | word0(d) << 16; |
+ d1 = word1(d) >> 16 | word1(d) << 16; |
+#else |
+#define d0 word0(d) |
+#define d1 word1(d) |
+#endif |
+ |
+#ifdef Pack_32 |
+ b = Balloc(1); |
+#else |
+ b = Balloc(2); |
+#endif |
+ x = b->x; |
+ |
+ z = d0 & Frac_mask; |
+ d0 &= 0x7fffffff; /* clear sign bit, which we ignore */ |
+#ifdef Sudden_Underflow |
+ de = (int)(d0 >> Exp_shift); |
+#ifndef IBM |
+ z |= Exp_msk11; |
+#endif |
+#else |
+ if (de = (int)(d0 >> Exp_shift)) |
+ z |= Exp_msk1; |
+#endif |
+#ifdef Pack_32 |
+ if (y = d1) { |
+ if (k = lo0bits(&y)) { |
+ x[0] = y | z << 32 - k; |
+ z >>= k; |
+ } |
+ else |
+ x[0] = y; |
+#ifndef Sudden_Underflow |
+ i = |
+#endif |
+ b->wds = (x[1] = z) ? 2 : 1; |
+ } |
+ else { |
+#ifdef DEBUG |
+ if (!z) |
+ Bug("Zero passed to d2b"); |
+#endif |
+ k = lo0bits(&z); |
+ x[0] = z; |
+#ifndef Sudden_Underflow |
+ i = |
+#endif |
+ b->wds = 1; |
+ k += 32; |
+ } |
+#else |
+ if (y = d1) { |
+ if (k = lo0bits(&y)) |
+ if (k >= 16) { |
+ x[0] = y | z << 32 - k & 0xffff; |
+ x[1] = z >> k - 16 & 0xffff; |
+ x[2] = z >> k; |
+ i = 2; |
+ } |
+ else { |
+ x[0] = y & 0xffff; |
+ x[1] = y >> 16 | z << 16 - k & 0xffff; |
+ x[2] = z >> k & 0xffff; |
+ x[3] = z >> k+16; |
+ i = 3; |
+ } |
+ else { |
+ x[0] = y & 0xffff; |
+ x[1] = y >> 16; |
+ x[2] = z & 0xffff; |
+ x[3] = z >> 16; |
+ i = 3; |
+ } |
+ } |
+ else { |
+#ifdef DEBUG |
+ if (!z) |
+ Bug("Zero passed to d2b"); |
+#endif |
+ k = lo0bits(&z); |
+ if (k >= 16) { |
+ x[0] = z; |
+ i = 0; |
+ } |
+ else { |
+ x[0] = z & 0xffff; |
+ x[1] = z >> 16; |
+ i = 1; |
+ } |
+ k += 32; |
+ } |
+ while(!x[i]) |
+ --i; |
+ b->wds = i + 1; |
+#endif |
+#ifndef Sudden_Underflow |
+ if (de) { |
+#endif |
+#ifdef IBM |
+ *e = (de - Bias - (P-1) << 2) + k; |
+ *bits = 4*P + 8 - k - hi0bits(word0(d) & Frac_mask); |
+#else |
+ *e = de - Bias - (P-1) + k; |
+ *bits = P - k; |
+#endif |
+#ifndef Sudden_Underflow |
+ } |
+ else { |
+ *e = de - Bias - (P-1) + 1 + k; |
+#ifdef Pack_32 |
+ *bits = 32*i - hi0bits(x[i-1]); |
+#else |
+ *bits = (i+2)*16 - hi0bits(x[i]); |
+#endif |
+ } |
+#endif |
+ return b; |
+ } |
+#undef d0 |
+#undef d1 |
+ |
+ static double |
+ratio |
+#ifdef KR_headers |
+ (a, b) Bigint *a, *b; |
+#else |
+ (Bigint *a, Bigint *b) |
+#endif |
+{ |
+ double da, db; |
+ int k, ka, kb; |
+ |
+ dval(da) = b2d(a, &ka); |
+ dval(db) = b2d(b, &kb); |
+#ifdef Pack_32 |
+ k = ka - kb + 32*(a->wds - b->wds); |
+#else |
+ k = ka - kb + 16*(a->wds - b->wds); |
+#endif |
+#ifdef IBM |
+ if (k > 0) { |
+ word0(da) += (k >> 2)*Exp_msk1; |
+ if (k &= 3) |
+ dval(da) *= 1 << k; |
+ } |
+ else { |
+ k = -k; |
+ word0(db) += (k >> 2)*Exp_msk1; |
+ if (k &= 3) |
+ dval(db) *= 1 << k; |
+ } |
+#else |
+ if (k > 0) |
+ word0(da) += k*Exp_msk1; |
+ else { |
+ k = -k; |
+ word0(db) += k*Exp_msk1; |
+ } |
+#endif |
+ return dval(da) / dval(db); |
+ } |
+ |
+ static CONST double |
+tens[] = { |
+ 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, |
+ 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, |
+ 1e20, 1e21, 1e22 |
+#ifdef VAX |
+ , 1e23, 1e24 |
+#endif |
+ }; |
+ |
+ static CONST double |
+#ifdef IEEE_Arith |
+bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 }; |
+static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, |
+#ifdef Avoid_Underflow |
+ 9007199254740992.*9007199254740992.e-256 |
+ /* = 2^106 * 1e-256 */ |
+#else |
+ 1e-256 |
+#endif |
+ }; |
+/* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */ |
+/* flag unnecessarily. It leads to a song and dance at the end of strtod. */ |
+#define Scale_Bit 0x10 |
+#define n_bigtens 5 |
+#else |
+#ifdef IBM |
+bigtens[] = { 1e16, 1e32, 1e64 }; |
+static CONST double tinytens[] = { 1e-16, 1e-32, 1e-64 }; |
+#define n_bigtens 3 |
+#else |
+bigtens[] = { 1e16, 1e32 }; |
+static CONST double tinytens[] = { 1e-16, 1e-32 }; |
+#define n_bigtens 2 |
+#endif |
+#endif |
+ |
+#ifdef INFNAN_CHECK |
+ |
+#ifndef NAN_WORD0 |
+#define NAN_WORD0 0x7ff80000 |
+#endif |
+ |
+#ifndef NAN_WORD1 |
+#define NAN_WORD1 0 |
+#endif |
+ |
+ static int |
+match |
+#ifdef KR_headers |
+ (sp, t) char **sp, *t; |
+#else |
+ (CONST char **sp, char *t) |
+#endif |
+{ |
+ int c, d; |
+ CONST char *s = *sp; |
+ |
+ while(d = *t++) { |
+ if ((c = *++s) >= 'A' && c <= 'Z') |
+ c += 'a' - 'A'; |
+ if (c != d) |
+ return 0; |
+ } |
+ *sp = s + 1; |
+ return 1; |
+ } |
+ |
+#ifndef No_Hex_NaN |
+ static void |
+hexnan |
+#ifdef KR_headers |
+ (rvp, sp) double *rvp; CONST char **sp; |
+#else |
+ (double *rvp, CONST char **sp) |
+#endif |
+{ |
+ ULong c, x[2]; |
+ CONST char *s; |
+ int havedig, udx0, xshift; |
+ |
+ x[0] = x[1] = 0; |
+ havedig = xshift = 0; |
+ udx0 = 1; |
+ s = *sp; |
+ /* allow optional initial 0x or 0X */ |
+ while((c = *(CONST unsigned char*)(s+1)) && c <= ' ') |
+ ++s; |
+ if (s[1] == '0' && (s[2] == 'x' || s[2] == 'X')) |
+ s += 2; |
+ while(c = *(CONST unsigned char*)++s) { |
+ if (c >= '0' && c <= '9') |
+ c -= '0'; |
+ else if (c >= 'a' && c <= 'f') |
+ c += 10 - 'a'; |
+ else if (c >= 'A' && c <= 'F') |
+ c += 10 - 'A'; |
+ else if (c <= ' ') { |
+ if (udx0 && havedig) { |
+ udx0 = 0; |
+ xshift = 1; |
+ } |
+ continue; |
+ } |
+#ifdef GDTOA_NON_PEDANTIC_NANCHECK |
+ else if (/*(*/ c == ')' && havedig) { |
+ *sp = s + 1; |
+ break; |
+ } |
+ else |
+ return; /* invalid form: don't change *sp */ |
+#else |
+ else { |
+ do { |
+ if (/*(*/ c == ')') { |
+ *sp = s + 1; |
+ break; |
+ } |
+ } while(c = *++s); |
+ break; |
+ } |
+#endif |
+ havedig = 1; |
+ if (xshift) { |
+ xshift = 0; |
+ x[0] = x[1]; |
+ x[1] = 0; |
+ } |
+ if (udx0) |
+ x[0] = (x[0] << 4) | (x[1] >> 28); |
+ x[1] = (x[1] << 4) | c; |
+ } |
+ if ((x[0] &= 0xfffff) || x[1]) { |
+ word0(*rvp) = Exp_mask | x[0]; |
+ word1(*rvp) = x[1]; |
+ } |
+ } |
+#endif /*No_Hex_NaN*/ |
+#endif /* INFNAN_CHECK */ |
+ |
+ double |
+strtod |
+#ifdef KR_headers |
+ (s00, se) CONST char *s00; char **se; |
+#else |
+ (CONST char *s00, char **se) |
+#endif |
+{ |
+#ifdef Avoid_Underflow |
+ int scale; |
+#endif |
+ int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign, |
+ e, e1, esign, i, j, k, nd, nd0, nf, nz, nz0, sign; |
+ CONST char *s, *s0, *s1; |
+ double aadj, aadj1, adj, rv, rv0; |
+ Long L; |
+ ULong y, z; |
+ Bigint *bb, *bb1, *bd, *bd0, *bs, *delta; |
+#ifdef SET_INEXACT |
+ int inexact, oldinexact; |
+#endif |
+#ifdef Honor_FLT_ROUNDS /*{*/ |
+ int Rounding; |
+#ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */ |
+ Rounding = Flt_Rounds; |
+#else /*}{*/ |
+ Rounding = 1; |
+ switch(fegetround()) { |
+ case FE_TOWARDZERO: Rounding = 0; break; |
+ case FE_UPWARD: Rounding = 2; break; |
+ case FE_DOWNWARD: Rounding = 3; |
+ } |
+#endif /*}}*/ |
+#endif /*}*/ |
+#ifdef USE_LOCALE |
+ CONST char *s2; |
+#endif |
+ |
+ sign = nz0 = nz = 0; |
+ dval(rv) = 0.; |
+ for(s = s00;;s++) switch(*s) { |
+ case '-': |
+ sign = 1; |
+ /* no break */ |
+ case '+': |
+ if (*++s) |
+ goto break2; |
+ /* no break */ |
+ case 0: |
+ goto ret0; |
+ case '\t': |
+ case '\n': |
+ case '\v': |
+ case '\f': |
+ case '\r': |
+ case ' ': |
+ continue; |
+ default: |
+ goto break2; |
+ } |
+ break2: |
+ if (*s == '0') { |
+ nz0 = 1; |
+ while(*++s == '0') ; |
+ if (!*s) |
+ goto ret; |
+ } |
+ s0 = s; |
+ y = z = 0; |
+ for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++) |
+ if (nd < 9) |
+ y = 10*y + c - '0'; |
+ else if (nd < 16) |
+ z = 10*z + c - '0'; |
+ nd0 = nd; |
+#ifdef USE_LOCALE |
+ s1 = localeconv()->decimal_point; |
+ if (c == *s1) { |
+ c = '.'; |
+ if (*++s1) { |
+ s2 = s; |
+ for(;;) { |
+ if (*++s2 != *s1) { |
+ c = 0; |
+ break; |
+ } |
+ if (!*++s1) { |
+ s = s2; |
+ break; |
+ } |
+ } |
+ } |
+ } |
+#endif |
+ if (c == '.') { |
+ c = *++s; |
+ if (!nd) { |
+ for(; c == '0'; c = *++s) |
+ nz++; |
+ if (c > '0' && c <= '9') { |
+ s0 = s; |
+ nf += nz; |
+ nz = 0; |
+ goto have_dig; |
+ } |
+ goto dig_done; |
+ } |
+ for(; c >= '0' && c <= '9'; c = *++s) { |
+ have_dig: |
+ nz++; |
+ if (c -= '0') { |
+ nf += nz; |
+ for(i = 1; i < nz; i++) |
+ if (nd++ < 9) |
+ y *= 10; |
+ else if (nd <= DBL_DIG + 1) |
+ z *= 10; |
+ if (nd++ < 9) |
+ y = 10*y + c; |
+ else if (nd <= DBL_DIG + 1) |
+ z = 10*z + c; |
+ nz = 0; |
+ } |
+ } |
+ } |
+ dig_done: |
+ e = 0; |
+ if (c == 'e' || c == 'E') { |
+ if (!nd && !nz && !nz0) { |
+ goto ret0; |
+ } |
+ s00 = s; |
+ esign = 0; |
+ switch(c = *++s) { |
+ case '-': |
+ esign = 1; |
+ case '+': |
+ c = *++s; |
+ } |
+ if (c >= '0' && c <= '9') { |
+ while(c == '0') |
+ c = *++s; |
+ if (c > '0' && c <= '9') { |
+ L = c - '0'; |
+ s1 = s; |
+ while((c = *++s) >= '0' && c <= '9') |
+ L = 10*L + c - '0'; |
+ if (s - s1 > 8 || L > 19999) |
+ /* Avoid confusion from exponents |
+ * so large that e might overflow. |
+ */ |
+ e = 19999; /* safe for 16 bit ints */ |
+ else |
+ e = (int)L; |
+ if (esign) |
+ e = -e; |
+ } |
+ else |
+ e = 0; |
+ } |
+ else |
+ s = s00; |
+ } |
+ if (!nd) { |
+ if (!nz && !nz0) { |
+#ifdef INFNAN_CHECK |
+ /* Check for Nan and Infinity */ |
+ switch(c) { |
+ case 'i': |
+ case 'I': |
+ if (match(&s,"nf")) { |
+ --s; |
+ if (!match(&s,"inity")) |
+ ++s; |
+ word0(rv) = 0x7ff00000; |
+ word1(rv) = 0; |
+ goto ret; |
+ } |
+ break; |
+ case 'n': |
+ case 'N': |
+ if (match(&s, "an")) { |
+ word0(rv) = NAN_WORD0; |
+ word1(rv) = NAN_WORD1; |
+#ifndef No_Hex_NaN |
+ if (*s == '(') /*)*/ |
+ hexnan(&rv, &s); |
+#endif |
+ goto ret; |
+ } |
+ } |
+#endif /* INFNAN_CHECK */ |
+ ret0: |
+ s = s00; |
+ sign = 0; |
+ } |
+ goto ret; |
+ } |
+ e1 = e -= nf; |
+ |
+ /* Now we have nd0 digits, starting at s0, followed by a |
+ * decimal point, followed by nd-nd0 digits. The number we're |
+ * after is the integer represented by those digits times |
+ * 10**e */ |
+ |
+ if (!nd0) |
+ nd0 = nd; |
+ k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1; |
+ dval(rv) = y; |
+ if (k > 9) { |
+#ifdef SET_INEXACT |
+ if (k > DBL_DIG) |
+ oldinexact = get_inexact(); |
+#endif |
+ dval(rv) = tens[k - 9] * dval(rv) + z; |
+ } |
+ bd0 = 0; |
+ if (nd <= DBL_DIG |
+#ifndef RND_PRODQUOT |
+#ifndef Honor_FLT_ROUNDS |
+ && Flt_Rounds == 1 |
+#endif |
+#endif |
+ ) { |
+ if (!e) |
+ goto ret; |
+ if (e > 0) { |
+ if (e <= Ten_pmax) { |
+#ifdef VAX |
+ goto vax_ovfl_check; |
+#else |
+#ifdef Honor_FLT_ROUNDS |
+ /* round correctly FLT_ROUNDS = 2 or 3 */ |
+ if (sign) { |
+ rv = -rv; |
+ sign = 0; |
+ } |
+#endif |
+ /* rv = */ rounded_product(dval(rv), tens[e]); |
+ goto ret; |
+#endif |
+ } |
+ i = DBL_DIG - nd; |
+ if (e <= Ten_pmax + i) { |
+ /* A fancier test would sometimes let us do |
+ * this for larger i values. |
+ */ |
+#ifdef Honor_FLT_ROUNDS |
+ /* round correctly FLT_ROUNDS = 2 or 3 */ |
+ if (sign) { |
+ rv = -rv; |
+ sign = 0; |
+ } |
+#endif |
+ e -= i; |
+ dval(rv) *= tens[i]; |
+#ifdef VAX |
+ /* VAX exponent range is so narrow we must |
+ * worry about overflow here... |
+ */ |
+ vax_ovfl_check: |
+ word0(rv) -= P*Exp_msk1; |
+ /* rv = */ rounded_product(dval(rv), tens[e]); |
+ if ((word0(rv) & Exp_mask) |
+ > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) |
+ goto ovfl; |
+ word0(rv) += P*Exp_msk1; |
+#else |
+ /* rv = */ rounded_product(dval(rv), tens[e]); |
+#endif |
+ goto ret; |
+ } |
+ } |
+#ifndef Inaccurate_Divide |
+ else if (e >= -Ten_pmax) { |
+#ifdef Honor_FLT_ROUNDS |
+ /* round correctly FLT_ROUNDS = 2 or 3 */ |
+ if (sign) { |
+ rv = -rv; |
+ sign = 0; |
+ } |
+#endif |
+ /* rv = */ rounded_quotient(dval(rv), tens[-e]); |
+ goto ret; |
+ } |
+#endif |
+ } |
+ e1 += nd - k; |
+ |
+#ifdef IEEE_Arith |
+#ifdef SET_INEXACT |
+ inexact = 1; |
+ if (k <= DBL_DIG) |
+ oldinexact = get_inexact(); |
+#endif |
+#ifdef Avoid_Underflow |
+ scale = 0; |
+#endif |
+#ifdef Honor_FLT_ROUNDS |
+ if (Rounding >= 2) { |
+ if (sign) |
+ Rounding = Rounding == 2 ? 0 : 2; |
+ else |
+ if (Rounding != 2) |
+ Rounding = 0; |
+ } |
+#endif |
+#endif /*IEEE_Arith*/ |
+ |
+ /* Get starting approximation = rv * 10**e1 */ |
+ |
+ if (e1 > 0) { |
+ if (i = e1 & 15) |
+ dval(rv) *= tens[i]; |
+ if (e1 &= ~15) { |
+ if (e1 > DBL_MAX_10_EXP) { |
+ ovfl: |
+#ifndef NO_ERRNO |
+ errno = ERANGE; |
+#endif |
+ /* Can't trust HUGE_VAL */ |
+#ifdef IEEE_Arith |
+#ifdef Honor_FLT_ROUNDS |
+ switch(Rounding) { |
+ case 0: /* toward 0 */ |
+ case 3: /* toward -infinity */ |
+ word0(rv) = Big0; |
+ word1(rv) = Big1; |
+ break; |
+ default: |
+ word0(rv) = Exp_mask; |
+ word1(rv) = 0; |
+ } |
+#else /*Honor_FLT_ROUNDS*/ |
+ word0(rv) = Exp_mask; |
+ word1(rv) = 0; |
+#endif /*Honor_FLT_ROUNDS*/ |
+#ifdef SET_INEXACT |
+ /* set overflow bit */ |
+ dval(rv0) = 1e300; |
+ dval(rv0) *= dval(rv0); |
+#endif |
+#else /*IEEE_Arith*/ |
+ word0(rv) = Big0; |
+ word1(rv) = Big1; |
+#endif /*IEEE_Arith*/ |
+ if (bd0) |
+ goto retfree; |
+ goto ret; |
+ } |
+ e1 >>= 4; |
+ for(j = 0; e1 > 1; j++, e1 >>= 1) |
+ if (e1 & 1) |
+ dval(rv) *= bigtens[j]; |
+ /* The last multiplication could overflow. */ |
+ word0(rv) -= P*Exp_msk1; |
+ dval(rv) *= bigtens[j]; |
+ if ((z = word0(rv) & Exp_mask) |
+ > Exp_msk1*(DBL_MAX_EXP+Bias-P)) |
+ goto ovfl; |
+ if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) { |
+ /* set to largest number */ |
+ /* (Can't trust DBL_MAX) */ |
+ word0(rv) = Big0; |
+ word1(rv) = Big1; |
+ } |
+ else |
+ word0(rv) += P*Exp_msk1; |
+ } |
+ } |
+ else if (e1 < 0) { |
+ e1 = -e1; |
+ if (i = e1 & 15) |
+ dval(rv) /= tens[i]; |
+ if (e1 >>= 4) { |
+ if (e1 >= 1 << n_bigtens) |
+ goto undfl; |
+#ifdef Avoid_Underflow |
+ if (e1 & Scale_Bit) |
+ scale = 2*P; |
+ for(j = 0; e1 > 0; j++, e1 >>= 1) |
+ if (e1 & 1) |
+ dval(rv) *= tinytens[j]; |
+ if (scale && (j = 2*P + 1 - ((word0(rv) & Exp_mask) |
+ >> Exp_shift)) > 0) { |
+ /* scaled rv is denormal; clear j low bits */ |
+ if (j >= 32) { |
+ word1(rv) = 0; |
+ if (j >= 53) |
+ word0(rv) = (P+2)*Exp_msk1; |
+ else |
+ word0(rv) &= 0xffffffff << j-32; |
+ } |
+ else |
+ word1(rv) &= 0xffffffff << j; |
+ } |
+#else |
+ for(j = 0; e1 > 1; j++, e1 >>= 1) |
+ if (e1 & 1) |
+ dval(rv) *= tinytens[j]; |
+ /* The last multiplication could underflow. */ |
+ dval(rv0) = dval(rv); |
+ dval(rv) *= tinytens[j]; |
+ if (!dval(rv)) { |
+ dval(rv) = 2.*dval(rv0); |
+ dval(rv) *= tinytens[j]; |
+#endif |
+ if (!dval(rv)) { |
+ undfl: |
+ dval(rv) = 0.; |
+#ifndef NO_ERRNO |
+ errno = ERANGE; |
+#endif |
+ if (bd0) |
+ goto retfree; |
+ goto ret; |
+ } |
+#ifndef Avoid_Underflow |
+ word0(rv) = Tiny0; |
+ word1(rv) = Tiny1; |
+ /* The refinement below will clean |
+ * this approximation up. |
+ */ |
+ } |
+#endif |
+ } |
+ } |
+ |
+ /* Now the hard part -- adjusting rv to the correct value.*/ |
+ |
+ /* Put digits into bd: true value = bd * 10^e */ |
+ |
+ bd0 = s2b(s0, nd0, nd, y); |
+ |
+ for(;;) { |
+ bd = Balloc(bd0->k); |
+ Bcopy(bd, bd0); |
+ bb = d2b(dval(rv), &bbe, &bbbits); /* rv = bb * 2^bbe */ |
+ bs = i2b(1); |
+ |
+ if (e >= 0) { |
+ bb2 = bb5 = 0; |
+ bd2 = bd5 = e; |
+ } |
+ else { |
+ bb2 = bb5 = -e; |
+ bd2 = bd5 = 0; |
+ } |
+ if (bbe >= 0) |
+ bb2 += bbe; |
+ else |
+ bd2 -= bbe; |
+ bs2 = bb2; |
+#ifdef Honor_FLT_ROUNDS |
+ if (Rounding != 1) |
+ bs2++; |
+#endif |
+#ifdef Avoid_Underflow |
+ j = bbe - scale; |
+ i = j + bbbits - 1; /* logb(rv) */ |
+ if (i < Emin) /* denormal */ |
+ j += P - Emin; |
+ else |
+ j = P + 1 - bbbits; |
+#else /*Avoid_Underflow*/ |
+#ifdef Sudden_Underflow |
+#ifdef IBM |
+ j = 1 + 4*P - 3 - bbbits + ((bbe + bbbits - 1) & 3); |
+#else |
+ j = P + 1 - bbbits; |
+#endif |
+#else /*Sudden_Underflow*/ |
+ j = bbe; |
+ i = j + bbbits - 1; /* logb(rv) */ |
+ if (i < Emin) /* denormal */ |
+ j += P - Emin; |
+ else |
+ j = P + 1 - bbbits; |
+#endif /*Sudden_Underflow*/ |
+#endif /*Avoid_Underflow*/ |
+ bb2 += j; |
+ bd2 += j; |
+#ifdef Avoid_Underflow |
+ bd2 += scale; |
+#endif |
+ i = bb2 < bd2 ? bb2 : bd2; |
+ if (i > bs2) |
+ i = bs2; |
+ if (i > 0) { |
+ bb2 -= i; |
+ bd2 -= i; |
+ bs2 -= i; |
+ } |
+ if (bb5 > 0) { |
+ bs = pow5mult(bs, bb5); |
+ bb1 = mult(bs, bb); |
+ Bfree(bb); |
+ bb = bb1; |
+ } |
+ if (bb2 > 0) |
+ bb = lshift(bb, bb2); |
+ if (bd5 > 0) |
+ bd = pow5mult(bd, bd5); |
+ if (bd2 > 0) |
+ bd = lshift(bd, bd2); |
+ if (bs2 > 0) |
+ bs = lshift(bs, bs2); |
+ delta = diff(bb, bd); |
+ dsign = delta->sign; |
+ delta->sign = 0; |
+ i = cmp(delta, bs); |
+#ifdef Honor_FLT_ROUNDS |
+ if (Rounding != 1) { |
+ if (i < 0) { |
+ /* Error is less than an ulp */ |
+ if (!delta->x[0] && delta->wds <= 1) { |
+ /* exact */ |
+#ifdef SET_INEXACT |
+ inexact = 0; |
+#endif |
+ break; |
+ } |
+ if (Rounding) { |
+ if (dsign) { |
+ adj = 1.; |
+ goto apply_adj; |
+ } |
+ } |
+ else if (!dsign) { |
+ adj = -1.; |
+ if (!word1(rv) |
+ && !(word0(rv) & Frac_mask)) { |
+ y = word0(rv) & Exp_mask; |
+#ifdef Avoid_Underflow |
+ if (!scale || y > 2*P*Exp_msk1) |
+#else |
+ if (y) |
+#endif |
+ { |
+ delta = lshift(delta,Log2P); |
+ if (cmp(delta, bs) <= 0) |
+ adj = -0.5; |
+ } |
+ } |
+ apply_adj: |
+#ifdef Avoid_Underflow |
+ if (scale && (y = word0(rv) & Exp_mask) |
+ <= 2*P*Exp_msk1) |
+ word0(adj) += (2*P+1)*Exp_msk1 - y; |
+#else |
+#ifdef Sudden_Underflow |
+ if ((word0(rv) & Exp_mask) <= |
+ P*Exp_msk1) { |
+ word0(rv) += P*Exp_msk1; |
+ dval(rv) += adj*ulp(dval(rv)); |
+ word0(rv) -= P*Exp_msk1; |
+ } |
+ else |
+#endif /*Sudden_Underflow*/ |
+#endif /*Avoid_Underflow*/ |
+ dval(rv) += adj*ulp(dval(rv)); |
+ } |
+ break; |
+ } |
+ adj = ratio(delta, bs); |
+ if (adj < 1.) |
+ adj = 1.; |
+ if (adj <= 0x7ffffffe) { |
+ /* adj = rounding ? ceil(adj) : floor(adj); */ |
+ y = adj; |
+ if (y != adj) { |
+ if (!((Rounding>>1) ^ dsign)) |
+ y++; |
+ adj = y; |
+ } |
+ } |
+#ifdef Avoid_Underflow |
+ if (scale && (y = word0(rv) & Exp_mask) <= 2*P*Exp_msk1) |
+ word0(adj) += (2*P+1)*Exp_msk1 - y; |
+#else |
+#ifdef Sudden_Underflow |
+ if ((word0(rv) & Exp_mask) <= P*Exp_msk1) { |
+ word0(rv) += P*Exp_msk1; |
+ adj *= ulp(dval(rv)); |
+ if (dsign) |
+ dval(rv) += adj; |
+ else |
+ dval(rv) -= adj; |
+ word0(rv) -= P*Exp_msk1; |
+ goto cont; |
+ } |
+#endif /*Sudden_Underflow*/ |
+#endif /*Avoid_Underflow*/ |
+ adj *= ulp(dval(rv)); |
+ if (dsign) { |
+ if (word0(rv) == Big0 && word1(rv) == Big1) |
+ goto ovfl; |
+ dval(rv) += adj; |
+ } |
+ else |
+ dval(rv) -= adj; |
+ goto cont; |
+ } |
+#endif /*Honor_FLT_ROUNDS*/ |
+ |
+ if (i < 0) { |
+ /* Error is less than half an ulp -- check for |
+ * special case of mantissa a power of two. |
+ */ |
+ if (dsign || word1(rv) || word0(rv) & Bndry_mask |
+#ifdef IEEE_Arith |
+#ifdef Avoid_Underflow |
+ || (word0(rv) & Exp_mask) <= (2*P+1)*Exp_msk1 |
+#else |
+ || (word0(rv) & Exp_mask) <= Exp_msk1 |
+#endif |
+#endif |
+ ) { |
+#ifdef SET_INEXACT |
+ if (!delta->x[0] && delta->wds <= 1) |
+ inexact = 0; |
+#endif |
+ break; |
+ } |
+ if (!delta->x[0] && delta->wds <= 1) { |
+ /* exact result */ |
+#ifdef SET_INEXACT |
+ inexact = 0; |
+#endif |
+ break; |
+ } |
+ delta = lshift(delta,Log2P); |
+ if (cmp(delta, bs) > 0) |
+ goto drop_down; |
+ break; |
+ } |
+ if (i == 0) { |
+ /* exactly half-way between */ |
+ if (dsign) { |
+ if ((word0(rv) & Bndry_mask1) == Bndry_mask1 |
+ && word1(rv) == ( |
+#ifdef Avoid_Underflow |
+ (scale && (y = word0(rv) & Exp_mask) <= 2*P*Exp_msk1) |
+ ? (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) : |
+#endif |
+ 0xffffffff)) { |
+ /*boundary case -- increment exponent*/ |
+ word0(rv) = (word0(rv) & Exp_mask) |
+ + Exp_msk1 |
+#ifdef IBM |
+ | Exp_msk1 >> 4 |
+#endif |
+ ; |
+ word1(rv) = 0; |
+#ifdef Avoid_Underflow |
+ dsign = 0; |
+#endif |
+ break; |
+ } |
+ } |
+ else if (!(word0(rv) & Bndry_mask) && !word1(rv)) { |
+ drop_down: |
+ /* boundary case -- decrement exponent */ |
+#ifdef Sudden_Underflow /*{{*/ |
+ L = word0(rv) & Exp_mask; |
+#ifdef IBM |
+ if (L < Exp_msk1) |
+#else |
+#ifdef Avoid_Underflow |
+ if (L <= (scale ? (2*P+1)*Exp_msk1 : Exp_msk1)) |
+#else |
+ if (L <= Exp_msk1) |
+#endif /*Avoid_Underflow*/ |
+#endif /*IBM*/ |
+ goto undfl; |
+ L -= Exp_msk1; |
+#else /*Sudden_Underflow}{*/ |
+#ifdef Avoid_Underflow |
+ if (scale) { |
+ L = word0(rv) & Exp_mask; |
+ if (L <= (2*P+1)*Exp_msk1) { |
+ if (L > (P+2)*Exp_msk1) |
+ /* round even ==> */ |
+ /* accept rv */ |
+ break; |
+ /* rv = smallest denormal */ |
+ goto undfl; |
+ } |
+ } |
+#endif /*Avoid_Underflow*/ |
+ L = (word0(rv) & Exp_mask) - Exp_msk1; |
+#endif /*Sudden_Underflow}}*/ |
+ word0(rv) = L | Bndry_mask1; |
+ word1(rv) = 0xffffffff; |
+#ifdef IBM |
+ goto cont; |
+#else |
+ break; |
+#endif |
+ } |
+#ifndef ROUND_BIASED |
+ if (!(word1(rv) & LSB)) |
+ break; |
+#endif |
+ if (dsign) |
+ dval(rv) += ulp(dval(rv)); |
+#ifndef ROUND_BIASED |
+ else { |
+ dval(rv) -= ulp(dval(rv)); |
+#ifndef Sudden_Underflow |
+ if (!dval(rv)) |
+ goto undfl; |
+#endif |
+ } |
+#ifdef Avoid_Underflow |
+ dsign = 1 - dsign; |
+#endif |
+#endif |
+ break; |
+ } |
+ if ((aadj = ratio(delta, bs)) <= 2.) { |
+ if (dsign) |
+ aadj = aadj1 = 1.; |
+ else if (word1(rv) || word0(rv) & Bndry_mask) { |
+#ifndef Sudden_Underflow |
+ if (word1(rv) == Tiny1 && !word0(rv)) |
+ goto undfl; |
+#endif |
+ aadj = 1.; |
+ aadj1 = -1.; |
+ } |
+ else { |
+ /* special case -- power of FLT_RADIX to be */ |
+ /* rounded down... */ |
+ |
+ if (aadj < 2./FLT_RADIX) |
+ aadj = 1./FLT_RADIX; |
+ else |
+ aadj *= 0.5; |
+ aadj1 = -aadj; |
+ } |
+ } |
+ else { |
+ aadj *= 0.5; |
+ aadj1 = dsign ? aadj : -aadj; |
+#ifdef Check_FLT_ROUNDS |
+ switch(Rounding) { |
+ case 2: /* towards +infinity */ |
+ aadj1 -= 0.5; |
+ break; |
+ case 0: /* towards 0 */ |
+ case 3: /* towards -infinity */ |
+ aadj1 += 0.5; |
+ } |
+#else |
+ if (Flt_Rounds == 0) |
+ aadj1 += 0.5; |
+#endif /*Check_FLT_ROUNDS*/ |
+ } |
+ y = word0(rv) & Exp_mask; |
+ |
+ /* Check for overflow */ |
+ |
+ if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) { |
+ dval(rv0) = dval(rv); |
+ word0(rv) -= P*Exp_msk1; |
+ adj = aadj1 * ulp(dval(rv)); |
+ dval(rv) += adj; |
+ if ((word0(rv) & Exp_mask) >= |
+ Exp_msk1*(DBL_MAX_EXP+Bias-P)) { |
+ if (word0(rv0) == Big0 && word1(rv0) == Big1) |
+ goto ovfl; |
+ word0(rv) = Big0; |
+ word1(rv) = Big1; |
+ goto cont; |
+ } |
+ else |
+ word0(rv) += P*Exp_msk1; |
+ } |
+ else { |
+#ifdef Avoid_Underflow |
+ if (scale && y <= 2*P*Exp_msk1) { |
+ if (aadj <= 0x7fffffff) { |
+ if ((z = aadj) <= 0) |
+ z = 1; |
+ aadj = z; |
+ aadj1 = dsign ? aadj : -aadj; |
+ } |
+ word0(aadj1) += (2*P+1)*Exp_msk1 - y; |
+ } |
+ adj = aadj1 * ulp(dval(rv)); |
+ dval(rv) += adj; |
+#else |
+#ifdef Sudden_Underflow |
+ if ((word0(rv) & Exp_mask) <= P*Exp_msk1) { |
+ dval(rv0) = dval(rv); |
+ word0(rv) += P*Exp_msk1; |
+ adj = aadj1 * ulp(dval(rv)); |
+ dval(rv) += adj; |
+#ifdef IBM |
+ if ((word0(rv) & Exp_mask) < P*Exp_msk1) |
+#else |
+ if ((word0(rv) & Exp_mask) <= P*Exp_msk1) |
+#endif |
+ { |
+ if (word0(rv0) == Tiny0 |
+ && word1(rv0) == Tiny1) |
+ goto undfl; |
+ word0(rv) = Tiny0; |
+ word1(rv) = Tiny1; |
+ goto cont; |
+ } |
+ else |
+ word0(rv) -= P*Exp_msk1; |
+ } |
+ else { |
+ adj = aadj1 * ulp(dval(rv)); |
+ dval(rv) += adj; |
+ } |
+#else /*Sudden_Underflow*/ |
+ /* Compute adj so that the IEEE rounding rules will |
+ * correctly round rv + adj in some half-way cases. |
+ * If rv * ulp(rv) is denormalized (i.e., |
+ * y <= (P-1)*Exp_msk1), we must adjust aadj to avoid |
+ * trouble from bits lost to denormalization; |
+ * example: 1.2e-307 . |
+ */ |
+ if (y <= (P-1)*Exp_msk1 && aadj > 1.) { |
+ aadj1 = (double)(int)(aadj + 0.5); |
+ if (!dsign) |
+ aadj1 = -aadj1; |
+ } |
+ adj = aadj1 * ulp(dval(rv)); |
+ dval(rv) += adj; |
+#endif /*Sudden_Underflow*/ |
+#endif /*Avoid_Underflow*/ |
+ } |
+ z = word0(rv) & Exp_mask; |
+#ifndef SET_INEXACT |
+#ifdef Avoid_Underflow |
+ if (!scale) |
+#endif |
+ if (y == z) { |
+ /* Can we stop now? */ |
+ L = (Long)aadj; |
+ aadj -= L; |
+ /* The tolerances below are conservative. */ |
+ if (dsign || word1(rv) || word0(rv) & Bndry_mask) { |
+ if (aadj < .4999999 || aadj > .5000001) |
+ break; |
+ } |
+ else if (aadj < .4999999/FLT_RADIX) |
+ break; |
+ } |
+#endif |
+ cont: |
+ Bfree(bb); |
+ Bfree(bd); |
+ Bfree(bs); |
+ Bfree(delta); |
+ } |
+#ifdef SET_INEXACT |
+ if (inexact) { |
+ if (!oldinexact) { |
+ word0(rv0) = Exp_1 + (70 << Exp_shift); |
+ word1(rv0) = 0; |
+ dval(rv0) += 1.; |
+ } |
+ } |
+ else if (!oldinexact) |
+ clear_inexact(); |
+#endif |
+#ifdef Avoid_Underflow |
+ if (scale) { |
+ word0(rv0) = Exp_1 - 2*P*Exp_msk1; |
+ word1(rv0) = 0; |
+ dval(rv) *= dval(rv0); |
+#ifndef NO_ERRNO |
+ /* try to avoid the bug of testing an 8087 register value */ |
+#ifdef IEEE_Arith |
+ if (!(word0(rv) & Exp_mask)) |
+#else |
+ if (word0(rv) == 0 && word1(rv) == 0) |
+#endif |
+ errno = ERANGE; |
+#endif |
+ } |
+#endif /* Avoid_Underflow */ |
+#ifdef SET_INEXACT |
+ if (inexact && !(word0(rv) & Exp_mask)) { |
+ /* set underflow bit */ |
+ dval(rv0) = 1e-300; |
+ dval(rv0) *= dval(rv0); |
+ } |
+#endif |
+ retfree: |
+ Bfree(bb); |
+ Bfree(bd); |
+ Bfree(bs); |
+ Bfree(bd0); |
+ Bfree(delta); |
+ ret: |
+ if (se) |
+ *se = (char *)s; |
+ return sign ? -dval(rv) : dval(rv); |
+ } |
+ |
+ static int |
+quorem |
+#ifdef KR_headers |
+ (b, S) Bigint *b, *S; |
+#else |
+ (Bigint *b, Bigint *S) |
+#endif |
+{ |
+ int n; |
+ ULong *bx, *bxe, q, *sx, *sxe; |
+#ifdef ULLong |
+ ULLong borrow, carry, y, ys; |
+#else |
+ ULong borrow, carry, y, ys; |
+#ifdef Pack_32 |
+ ULong si, z, zs; |
+#endif |
+#endif |
+ |
+ n = S->wds; |
+#ifdef DEBUG |
+ /*debug*/ if (b->wds > n) |
+ /*debug*/ Bug("oversize b in quorem"); |
+#endif |
+ if (b->wds < n) |
+ return 0; |
+ sx = S->x; |
+ sxe = sx + --n; |
+ bx = b->x; |
+ bxe = bx + n; |
+ q = *bxe / (*sxe + 1); /* ensure q <= true quotient */ |
+#ifdef DEBUG |
+ /*debug*/ if (q > 9) |
+ /*debug*/ Bug("oversized quotient in quorem"); |
+#endif |
+ if (q) { |
+ borrow = 0; |
+ carry = 0; |
+ do { |
+#ifdef ULLong |
+ ys = *sx++ * (ULLong)q + carry; |
+ carry = ys >> 32; |
+ y = *bx - (ys & FFFFFFFF) - borrow; |
+ borrow = y >> 32 & (ULong)1; |
+ *bx++ = y & FFFFFFFF; |
+#else |
+#ifdef Pack_32 |
+ si = *sx++; |
+ ys = (si & 0xffff) * q + carry; |
+ zs = (si >> 16) * q + (ys >> 16); |
+ carry = zs >> 16; |
+ y = (*bx & 0xffff) - (ys & 0xffff) - borrow; |
+ borrow = (y & 0x10000) >> 16; |
+ z = (*bx >> 16) - (zs & 0xffff) - borrow; |
+ borrow = (z & 0x10000) >> 16; |
+ Storeinc(bx, z, y); |
+#else |
+ ys = *sx++ * q + carry; |
+ carry = ys >> 16; |
+ y = *bx - (ys & 0xffff) - borrow; |
+ borrow = (y & 0x10000) >> 16; |
+ *bx++ = y & 0xffff; |
+#endif |
+#endif |
+ } |
+ while(sx <= sxe); |
+ if (!*bxe) { |
+ bx = b->x; |
+ while(--bxe > bx && !*bxe) |
+ --n; |
+ b->wds = n; |
+ } |
+ } |
+ if (cmp(b, S) >= 0) { |
+ q++; |
+ borrow = 0; |
+ carry = 0; |
+ bx = b->x; |
+ sx = S->x; |
+ do { |
+#ifdef ULLong |
+ ys = *sx++ + carry; |
+ carry = ys >> 32; |
+ y = *bx - (ys & FFFFFFFF) - borrow; |
+ borrow = y >> 32 & (ULong)1; |
+ *bx++ = y & FFFFFFFF; |
+#else |
+#ifdef Pack_32 |
+ si = *sx++; |
+ ys = (si & 0xffff) + carry; |
+ zs = (si >> 16) + (ys >> 16); |
+ carry = zs >> 16; |
+ y = (*bx & 0xffff) - (ys & 0xffff) - borrow; |
+ borrow = (y & 0x10000) >> 16; |
+ z = (*bx >> 16) - (zs & 0xffff) - borrow; |
+ borrow = (z & 0x10000) >> 16; |
+ Storeinc(bx, z, y); |
+#else |
+ ys = *sx++ + carry; |
+ carry = ys >> 16; |
+ y = *bx - (ys & 0xffff) - borrow; |
+ borrow = (y & 0x10000) >> 16; |
+ *bx++ = y & 0xffff; |
+#endif |
+#endif |
+ } |
+ while(sx <= sxe); |
+ bx = b->x; |
+ bxe = bx + n; |
+ if (!*bxe) { |
+ while(--bxe > bx && !*bxe) |
+ --n; |
+ b->wds = n; |
+ } |
+ } |
+ return q; |
+ } |
+ |
+#ifndef MULTIPLE_THREADS |
+ static char *dtoa_result; |
+#endif |
+ |
+ static char * |
+#ifdef KR_headers |
+rv_alloc(i) int i; |
+#else |
+rv_alloc(int i) |
+#endif |
+{ |
+ int j, k, *r; |
+ |
+ j = sizeof(ULong); |
+ for(k = 0; |
+ sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= i; |
+ j <<= 1) |
+ k++; |
+ r = (int*)Balloc(k); |
+ *r = k; |
+ return |
+#ifndef MULTIPLE_THREADS |
+ dtoa_result = |
+#endif |
+ (char *)(r+1); |
+ } |
+ |
+ static char * |
+#ifdef KR_headers |
+nrv_alloc(s, rve, n) char *s, **rve; int n; |
+#else |
+nrv_alloc(char *s, char **rve, int n) |
+#endif |
+{ |
+ char *rv, *t; |
+ |
+ t = rv = rv_alloc(n); |
+ while(*t = *s++) t++; |
+ if (rve) |
+ *rve = t; |
+ return rv; |
+ } |
+ |
+/* freedtoa(s) must be used to free values s returned by dtoa |
+ * when MULTIPLE_THREADS is #defined. It should be used in all cases, |
+ * but for consistency with earlier versions of dtoa, it is optional |
+ * when MULTIPLE_THREADS is not defined. |
+ */ |
+ |
+ void |
+#ifdef KR_headers |
+freedtoa(s) char *s; |
+#else |
+freedtoa(char *s) |
+#endif |
+{ |
+ Bigint *b = (Bigint *)((int *)s - 1); |
+ b->maxwds = 1 << (b->k = *(int*)b); |
+ Bfree(b); |
+#ifndef MULTIPLE_THREADS |
+ if (s == dtoa_result) |
+ dtoa_result = 0; |
+#endif |
+ } |
+ |
+/* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. |
+ * |
+ * Inspired by "How to Print Floating-Point Numbers Accurately" by |
+ * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126]. |
+ * |
+ * Modifications: |
+ * 1. Rather than iterating, we use a simple numeric overestimate |
+ * to determine k = floor(log10(d)). We scale relevant |
+ * quantities using O(log2(k)) rather than O(k) multiplications. |
+ * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't |
+ * try to generate digits strictly left to right. Instead, we |
+ * compute with fewer bits and propagate the carry if necessary |
+ * when rounding the final digit up. This is often faster. |
+ * 3. Under the assumption that input will be rounded nearest, |
+ * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. |
+ * That is, we allow equality in stopping tests when the |
+ * round-nearest rule will give the same floating-point value |
+ * as would satisfaction of the stopping test with strict |
+ * inequality. |
+ * 4. We remove common factors of powers of 2 from relevant |
+ * quantities. |
+ * 5. When converting floating-point integers less than 1e16, |
+ * we use floating-point arithmetic rather than resorting |
+ * to multiple-precision integers. |
+ * 6. When asked to produce fewer than 15 digits, we first try |
+ * to get by with floating-point arithmetic; we resort to |
+ * multiple-precision integer arithmetic only if we cannot |
+ * guarantee that the floating-point calculation has given |
+ * the correctly rounded result. For k requested digits and |
+ * "uniformly" distributed input, the probability is |
+ * something like 10^(k-15) that we must resort to the Long |
+ * calculation. |
+ */ |
+ |
+ char * |
+dtoa |
+#ifdef KR_headers |
+ (d, mode, ndigits, decpt, sign, rve) |
+ double d; int mode, ndigits, *decpt, *sign; char **rve; |
+#else |
+ (double d, int mode, int ndigits, int *decpt, int *sign, char **rve) |
+#endif |
+{ |
+ /* Arguments ndigits, decpt, sign are similar to those |
+ of ecvt and fcvt; trailing zeros are suppressed from |
+ the returned string. If not null, *rve is set to point |
+ to the end of the return value. If d is +-Infinity or NaN, |
+ then *decpt is set to 9999. |
+ |
+ mode: |
+ 0 ==> shortest string that yields d when read in |
+ and rounded to nearest. |
+ 1 ==> like 0, but with Steele & White stopping rule; |
+ e.g. with IEEE P754 arithmetic , mode 0 gives |
+ 1e23 whereas mode 1 gives 9.999999999999999e22. |
+ 2 ==> max(1,ndigits) significant digits. This gives a |
+ return value similar to that of ecvt, except |
+ that trailing zeros are suppressed. |
+ 3 ==> through ndigits past the decimal point. This |
+ gives a return value similar to that from fcvt, |
+ except that trailing zeros are suppressed, and |
+ ndigits can be negative. |
+ 4,5 ==> similar to 2 and 3, respectively, but (in |
+ round-nearest mode) with the tests of mode 0 to |
+ possibly return a shorter string that rounds to d. |
+ With IEEE arithmetic and compilation with |
+ -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same |
+ as modes 2 and 3 when FLT_ROUNDS != 1. |
+ 6-9 ==> Debugging modes similar to mode - 4: don't try |
+ fast floating-point estimate (if applicable). |
+ |
+ Values of mode other than 0-9 are treated as mode 0. |
+ |
+ Sufficient space is allocated to the return value |
+ to hold the suppressed trailing zeros. |
+ */ |
+ |
+ int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1, |
+ j, j1, k, k0, k_check, leftright, m2, m5, s2, s5, |
+ spec_case, try_quick; |
+ Long L; |
+#ifndef Sudden_Underflow |
+ int denorm; |
+ ULong x; |
+#endif |
+ Bigint *b, *b1, *delta, *mlo, *mhi, *S; |
+ double d2, ds, eps; |
+ char *s, *s0; |
+#ifdef SET_INEXACT |
+ int inexact, oldinexact; |
+#endif |
+#ifdef Honor_FLT_ROUNDS /*{*/ |
+ int Rounding; |
+#ifdef Trust_FLT_ROUNDS /*{{ only define this if FLT_ROUNDS really works! */ |
+ Rounding = Flt_Rounds; |
+#else /*}{*/ |
+ Rounding = 1; |
+ switch(fegetround()) { |
+ case FE_TOWARDZERO: Rounding = 0; break; |
+ case FE_UPWARD: Rounding = 2; break; |
+ case FE_DOWNWARD: Rounding = 3; |
+ } |
+#endif /*}}*/ |
+#endif /*}*/ |
+ |
+#ifndef MULTIPLE_THREADS |
+ if (dtoa_result) { |
+ freedtoa(dtoa_result); |
+ dtoa_result = 0; |
+ } |
+#endif |
+ |
+ if (word0(d) & Sign_bit) { |
+ /* set sign for everything, including 0's and NaNs */ |
+ *sign = 1; |
+ word0(d) &= ~Sign_bit; /* clear sign bit */ |
+ } |
+ else |
+ *sign = 0; |
+ |
+#if defined(IEEE_Arith) + defined(VAX) |
+#ifdef IEEE_Arith |
+ if ((word0(d) & Exp_mask) == Exp_mask) |
+#else |
+ if (word0(d) == 0x8000) |
+#endif |
+ { |
+ /* Infinity or NaN */ |
+ *decpt = 9999; |
+#ifdef IEEE_Arith |
+ if (!word1(d) && !(word0(d) & 0xfffff)) |
+ return nrv_alloc("Infinity", rve, 8); |
+#endif |
+ return nrv_alloc("NaN", rve, 3); |
+ } |
+#endif |
+#ifdef IBM |
+ dval(d) += 0; /* normalize */ |
+#endif |
+ if (!dval(d)) { |
+ *decpt = 1; |
+ return nrv_alloc("0", rve, 1); |
+ } |
+ |
+#ifdef SET_INEXACT |
+ try_quick = oldinexact = get_inexact(); |
+ inexact = 1; |
+#endif |
+#ifdef Honor_FLT_ROUNDS |
+ if (Rounding >= 2) { |
+ if (*sign) |
+ Rounding = Rounding == 2 ? 0 : 2; |
+ else |
+ if (Rounding != 2) |
+ Rounding = 0; |
+ } |
+#endif |
+ |
+ b = d2b(dval(d), &be, &bbits); |
+#ifdef Sudden_Underflow |
+ i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1)); |
+#else |
+ if (i = (int)(word0(d) >> Exp_shift1 & (Exp_mask>>Exp_shift1))) { |
+#endif |
+ dval(d2) = dval(d); |
+ word0(d2) &= Frac_mask1; |
+ word0(d2) |= Exp_11; |
+#ifdef IBM |
+ if (j = 11 - hi0bits(word0(d2) & Frac_mask)) |
+ dval(d2) /= 1 << j; |
+#endif |
+ |
+ /* log(x) ~=~ log(1.5) + (x-1.5)/1.5 |
+ * log10(x) = log(x) / log(10) |
+ * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) |
+ * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) |
+ * |
+ * This suggests computing an approximation k to log10(d) by |
+ * |
+ * k = (i - Bias)*0.301029995663981 |
+ * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); |
+ * |
+ * We want k to be too large rather than too small. |
+ * The error in the first-order Taylor series approximation |
+ * is in our favor, so we just round up the constant enough |
+ * to compensate for any error in the multiplication of |
+ * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, |
+ * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, |
+ * adding 1e-13 to the constant term more than suffices. |
+ * Hence we adjust the constant term to 0.1760912590558. |
+ * (We could get a more accurate k by invoking log10, |
+ * but this is probably not worthwhile.) |
+ */ |
+ |
+ i -= Bias; |
+#ifdef IBM |
+ i <<= 2; |
+ i += j; |
+#endif |
+#ifndef Sudden_Underflow |
+ denorm = 0; |
+ } |
+ else { |
+ /* d is denormalized */ |
+ |
+ i = bbits + be + (Bias + (P-1) - 1); |
+ x = i > 32 ? word0(d) << 64 - i | word1(d) >> i - 32 |
+ : word1(d) << 32 - i; |
+ dval(d2) = x; |
+ word0(d2) -= 31*Exp_msk1; /* adjust exponent */ |
+ i -= (Bias + (P-1) - 1) + 1; |
+ denorm = 1; |
+ } |
+#endif |
+ ds = (dval(d2)-1.5)*0.289529654602168 + 0.1760912590558 + i*0.301029995663981; |
+ k = (int)ds; |
+ if (ds < 0. && ds != k) |
+ k--; /* want k = floor(ds) */ |
+ k_check = 1; |
+ if (k >= 0 && k <= Ten_pmax) { |
+ if (dval(d) < tens[k]) |
+ k--; |
+ k_check = 0; |
+ } |
+ j = bbits - i - 1; |
+ if (j >= 0) { |
+ b2 = 0; |
+ s2 = j; |
+ } |
+ else { |
+ b2 = -j; |
+ s2 = 0; |
+ } |
+ if (k >= 0) { |
+ b5 = 0; |
+ s5 = k; |
+ s2 += k; |
+ } |
+ else { |
+ b2 -= k; |
+ b5 = -k; |
+ s5 = 0; |
+ } |
+ if (mode < 0 || mode > 9) |
+ mode = 0; |
+ |
+#ifndef SET_INEXACT |
+#ifdef Check_FLT_ROUNDS |
+ try_quick = Rounding == 1; |
+#else |
+ try_quick = 1; |
+#endif |
+#endif /*SET_INEXACT*/ |
+ |
+ if (mode > 5) { |
+ mode -= 4; |
+ try_quick = 0; |
+ } |
+ leftright = 1; |
+ switch(mode) { |
+ case 0: |
+ case 1: |
+ ilim = ilim1 = -1; |
+ i = 18; |
+ ndigits = 0; |
+ break; |
+ case 2: |
+ leftright = 0; |
+ /* no break */ |
+ case 4: |
+ if (ndigits <= 0) |
+ ndigits = 1; |
+ ilim = ilim1 = i = ndigits; |
+ break; |
+ case 3: |
+ leftright = 0; |
+ /* no break */ |
+ case 5: |
+ i = ndigits + k + 1; |
+ ilim = i; |
+ ilim1 = i - 1; |
+ if (i <= 0) |
+ i = 1; |
+ } |
+ s = s0 = rv_alloc(i); |
+ |
+#ifdef Honor_FLT_ROUNDS |
+ if (mode > 1 && Rounding != 1) |
+ leftright = 0; |
+#endif |
+ |
+ if (ilim >= 0 && ilim <= Quick_max && try_quick) { |
+ |
+ /* Try to get by with floating-point arithmetic. */ |
+ |
+ i = 0; |
+ dval(d2) = dval(d); |
+ k0 = k; |
+ ilim0 = ilim; |
+ ieps = 2; /* conservative */ |
+ if (k > 0) { |
+ ds = tens[k&0xf]; |
+ j = k >> 4; |
+ if (j & Bletch) { |
+ /* prevent overflows */ |
+ j &= Bletch - 1; |
+ dval(d) /= bigtens[n_bigtens-1]; |
+ ieps++; |
+ } |
+ for(; j; j >>= 1, i++) |
+ if (j & 1) { |
+ ieps++; |
+ ds *= bigtens[i]; |
+ } |
+ dval(d) /= ds; |
+ } |
+ else if (j1 = -k) { |
+ dval(d) *= tens[j1 & 0xf]; |
+ for(j = j1 >> 4; j; j >>= 1, i++) |
+ if (j & 1) { |
+ ieps++; |
+ dval(d) *= bigtens[i]; |
+ } |
+ } |
+ if (k_check && dval(d) < 1. && ilim > 0) { |
+ if (ilim1 <= 0) |
+ goto fast_failed; |
+ ilim = ilim1; |
+ k--; |
+ dval(d) *= 10.; |
+ ieps++; |
+ } |
+ dval(eps) = ieps*dval(d) + 7.; |
+ word0(eps) -= (P-1)*Exp_msk1; |
+ if (ilim == 0) { |
+ S = mhi = 0; |
+ dval(d) -= 5.; |
+ if (dval(d) > dval(eps)) |
+ goto one_digit; |
+ if (dval(d) < -dval(eps)) |
+ goto no_digits; |
+ goto fast_failed; |
+ } |
+#ifndef No_leftright |
+ if (leftright) { |
+ /* Use Steele & White method of only |
+ * generating digits needed. |
+ */ |
+ dval(eps) = 0.5/tens[ilim-1] - dval(eps); |
+ for(i = 0;;) { |
+ L = dval(d); |
+ dval(d) -= L; |
+ *s++ = '0' + (int)L; |
+ if (dval(d) < dval(eps)) |
+ goto ret1; |
+ if (1. - dval(d) < dval(eps)) |
+ goto bump_up; |
+ if (++i >= ilim) |
+ break; |
+ dval(eps) *= 10.; |
+ dval(d) *= 10.; |
+ } |
+ } |
+ else { |
+#endif |
+ /* Generate ilim digits, then fix them up. */ |
+ dval(eps) *= tens[ilim-1]; |
+ for(i = 1;; i++, dval(d) *= 10.) { |
+ L = (Long)(dval(d)); |
+ if (!(dval(d) -= L)) |
+ ilim = i; |
+ *s++ = '0' + (int)L; |
+ if (i == ilim) { |
+ if (dval(d) > 0.5 + dval(eps)) |
+ goto bump_up; |
+ else if (dval(d) < 0.5 - dval(eps)) { |
+ while(*--s == '0'); |
+ s++; |
+ goto ret1; |
+ } |
+ break; |
+ } |
+ } |
+#ifndef No_leftright |
+ } |
+#endif |
+ fast_failed: |
+ s = s0; |
+ dval(d) = dval(d2); |
+ k = k0; |
+ ilim = ilim0; |
+ } |
+ |
+ /* Do we have a "small" integer? */ |
+ |
+ if (be >= 0 && k <= Int_max) { |
+ /* Yes. */ |
+ ds = tens[k]; |
+ if (ndigits < 0 && ilim <= 0) { |
+ S = mhi = 0; |
+ if (ilim < 0 || dval(d) <= 5*ds) |
+ goto no_digits; |
+ goto one_digit; |
+ } |
+ for(i = 1;; i++, dval(d) *= 10.) { |
+ L = (Long)(dval(d) / ds); |
+ dval(d) -= L*ds; |
+#ifdef Check_FLT_ROUNDS |
+ /* If FLT_ROUNDS == 2, L will usually be high by 1 */ |
+ if (dval(d) < 0) { |
+ L--; |
+ dval(d) += ds; |
+ } |
+#endif |
+ *s++ = '0' + (int)L; |
+ if (!dval(d)) { |
+#ifdef SET_INEXACT |
+ inexact = 0; |
+#endif |
+ break; |
+ } |
+ if (i == ilim) { |
+#ifdef Honor_FLT_ROUNDS |
+ if (mode > 1) |
+ switch(Rounding) { |
+ case 0: goto ret1; |
+ case 2: goto bump_up; |
+ } |
+#endif |
+ dval(d) += dval(d); |
+ if (dval(d) > ds || dval(d) == ds && L & 1) { |
+ bump_up: |
+ while(*--s == '9') |
+ if (s == s0) { |
+ k++; |
+ *s = '0'; |
+ break; |
+ } |
+ ++*s++; |
+ } |
+ break; |
+ } |
+ } |
+ goto ret1; |
+ } |
+ |
+ m2 = b2; |
+ m5 = b5; |
+ mhi = mlo = 0; |
+ if (leftright) { |
+ i = |
+#ifndef Sudden_Underflow |
+ denorm ? be + (Bias + (P-1) - 1 + 1) : |
+#endif |
+#ifdef IBM |
+ 1 + 4*P - 3 - bbits + ((bbits + be - 1) & 3); |
+#else |
+ 1 + P - bbits; |
+#endif |
+ b2 += i; |
+ s2 += i; |
+ mhi = i2b(1); |
+ } |
+ if (m2 > 0 && s2 > 0) { |
+ i = m2 < s2 ? m2 : s2; |
+ b2 -= i; |
+ m2 -= i; |
+ s2 -= i; |
+ } |
+ if (b5 > 0) { |
+ if (leftright) { |
+ if (m5 > 0) { |
+ mhi = pow5mult(mhi, m5); |
+ b1 = mult(mhi, b); |
+ Bfree(b); |
+ b = b1; |
+ } |
+ if (j = b5 - m5) |
+ b = pow5mult(b, j); |
+ } |
+ else |
+ b = pow5mult(b, b5); |
+ } |
+ S = i2b(1); |
+ if (s5 > 0) |
+ S = pow5mult(S, s5); |
+ |
+ /* Check for special case that d is a normalized power of 2. */ |
+ |
+ spec_case = 0; |
+ if ((mode < 2 || leftright) |
+#ifdef Honor_FLT_ROUNDS |
+ && Rounding == 1 |
+#endif |
+ ) { |
+ if (!word1(d) && !(word0(d) & Bndry_mask) |
+#ifndef Sudden_Underflow |
+ && word0(d) & (Exp_mask & ~Exp_msk1) |
+#endif |
+ ) { |
+ /* The special case */ |
+ b2 += Log2P; |
+ s2 += Log2P; |
+ spec_case = 1; |
+ } |
+ } |
+ |
+ /* Arrange for convenient computation of quotients: |
+ * shift left if necessary so divisor has 4 leading 0 bits. |
+ * |
+ * Perhaps we should just compute leading 28 bits of S once |
+ * and for all and pass them and a shift to quorem, so it |
+ * can do shifts and ors to compute the numerator for q. |
+ */ |
+#ifdef Pack_32 |
+ if (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f) |
+ i = 32 - i; |
+#else |
+ if (i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0xf) |
+ i = 16 - i; |
+#endif |
+ if (i > 4) { |
+ i -= 4; |
+ b2 += i; |
+ m2 += i; |
+ s2 += i; |
+ } |
+ else if (i < 4) { |
+ i += 28; |
+ b2 += i; |
+ m2 += i; |
+ s2 += i; |
+ } |
+ if (b2 > 0) |
+ b = lshift(b, b2); |
+ if (s2 > 0) |
+ S = lshift(S, s2); |
+ if (k_check) { |
+ if (cmp(b,S) < 0) { |
+ k--; |
+ b = multadd(b, 10, 0); /* we botched the k estimate */ |
+ if (leftright) |
+ mhi = multadd(mhi, 10, 0); |
+ ilim = ilim1; |
+ } |
+ } |
+ if (ilim <= 0 && (mode == 3 || mode == 5)) { |
+ if (ilim < 0 || cmp(b,S = multadd(S,5,0)) <= 0) { |
+ /* no digits, fcvt style */ |
+ no_digits: |
+ k = -1 - ndigits; |
+ goto ret; |
+ } |
+ one_digit: |
+ *s++ = '1'; |
+ k++; |
+ goto ret; |
+ } |
+ if (leftright) { |
+ if (m2 > 0) |
+ mhi = lshift(mhi, m2); |
+ |
+ /* Compute mlo -- check for special case |
+ * that d is a normalized power of 2. |
+ */ |
+ |
+ mlo = mhi; |
+ if (spec_case) { |
+ mhi = Balloc(mhi->k); |
+ Bcopy(mhi, mlo); |
+ mhi = lshift(mhi, Log2P); |
+ } |
+ |
+ for(i = 1;;i++) { |
+ dig = quorem(b,S) + '0'; |
+ /* Do we yet have the shortest decimal string |
+ * that will round to d? |
+ */ |
+ j = cmp(b, mlo); |
+ delta = diff(S, mhi); |
+ j1 = delta->sign ? 1 : cmp(b, delta); |
+ Bfree(delta); |
+#ifndef ROUND_BIASED |
+ if (j1 == 0 && mode != 1 && !(word1(d) & 1) |
+#ifdef Honor_FLT_ROUNDS |
+ && Rounding >= 1 |
+#endif |
+ ) { |
+ if (dig == '9') |
+ goto round_9_up; |
+ if (j > 0) |
+ dig++; |
+#ifdef SET_INEXACT |
+ else if (!b->x[0] && b->wds <= 1) |
+ inexact = 0; |
+#endif |
+ *s++ = dig; |
+ goto ret; |
+ } |
+#endif |
+ if (j < 0 || j == 0 && mode != 1 |
+#ifndef ROUND_BIASED |
+ && !(word1(d) & 1) |
+#endif |
+ ) { |
+ if (!b->x[0] && b->wds <= 1) { |
+#ifdef SET_INEXACT |
+ inexact = 0; |
+#endif |
+ goto accept_dig; |
+ } |
+#ifdef Honor_FLT_ROUNDS |
+ if (mode > 1) |
+ switch(Rounding) { |
+ case 0: goto accept_dig; |
+ case 2: goto keep_dig; |
+ } |
+#endif /*Honor_FLT_ROUNDS*/ |
+ if (j1 > 0) { |
+ b = lshift(b, 1); |
+ j1 = cmp(b, S); |
+ if ((j1 > 0 || j1 == 0 && dig & 1) |
+ && dig++ == '9') |
+ goto round_9_up; |
+ } |
+ accept_dig: |
+ *s++ = dig; |
+ goto ret; |
+ } |
+ if (j1 > 0) { |
+#ifdef Honor_FLT_ROUNDS |
+ if (!Rounding) |
+ goto accept_dig; |
+#endif |
+ if (dig == '9') { /* possible if i == 1 */ |
+ round_9_up: |
+ *s++ = '9'; |
+ goto roundoff; |
+ } |
+ *s++ = dig + 1; |
+ goto ret; |
+ } |
+#ifdef Honor_FLT_ROUNDS |
+ keep_dig: |
+#endif |
+ *s++ = dig; |
+ if (i == ilim) |
+ break; |
+ b = multadd(b, 10, 0); |
+ if (mlo == mhi) |
+ mlo = mhi = multadd(mhi, 10, 0); |
+ else { |
+ mlo = multadd(mlo, 10, 0); |
+ mhi = multadd(mhi, 10, 0); |
+ } |
+ } |
+ } |
+ else |
+ for(i = 1;; i++) { |
+ *s++ = dig = quorem(b,S) + '0'; |
+ if (!b->x[0] && b->wds <= 1) { |
+#ifdef SET_INEXACT |
+ inexact = 0; |
+#endif |
+ goto ret; |
+ } |
+ if (i >= ilim) |
+ break; |
+ b = multadd(b, 10, 0); |
+ } |
+ |
+ /* Round off last digit */ |
+ |
+#ifdef Honor_FLT_ROUNDS |
+ switch(Rounding) { |
+ case 0: goto trimzeros; |
+ case 2: goto roundoff; |
+ } |
+#endif |
+ b = lshift(b, 1); |
+ j = cmp(b, S); |
+ if (j > 0 || j == 0 && dig & 1) { |
+ roundoff: |
+ while(*--s == '9') |
+ if (s == s0) { |
+ k++; |
+ *s++ = '1'; |
+ goto ret; |
+ } |
+ ++*s++; |
+ } |
+ else { |
+ trimzeros: |
+ while(*--s == '0'); |
+ s++; |
+ } |
+ ret: |
+ Bfree(S); |
+ if (mhi) { |
+ if (mlo && mlo != mhi) |
+ Bfree(mlo); |
+ Bfree(mhi); |
+ } |
+ ret1: |
+#ifdef SET_INEXACT |
+ if (inexact) { |
+ if (!oldinexact) { |
+ word0(d) = Exp_1 + (70 << Exp_shift); |
+ word1(d) = 0; |
+ dval(d) += 1.; |
+ } |
+ } |
+ else if (!oldinexact) |
+ clear_inexact(); |
+#endif |
+ Bfree(b); |
+ *s = 0; |
+ *decpt = k + 1; |
+ if (rve) |
+ *rve = s; |
+ return s0; |
+ } |
+ |
+} // namespace dmg_fp |