OLD | NEW |
(Empty) | |
| 1 // Copyright 2008 The RE2 Authors. All Rights Reserved. |
| 2 // Use of this source code is governed by a BSD-style |
| 3 // license that can be found in the LICENSE file. |
| 4 |
| 5 // Tested by search_test.cc, exhaustive_test.cc, tester.cc |
| 6 |
| 7 // Prog::SearchBitState is a regular expression search with submatch |
| 8 // tracking for small regular expressions and texts. Like |
| 9 // testing/backtrack.cc, it allocates a bit vector with (length of |
| 10 // text) * (length of prog) bits, to make sure it never explores the |
| 11 // same (character position, instruction) state multiple times. This |
| 12 // limits the search to run in time linear in the length of the text. |
| 13 // |
| 14 // Unlike testing/backtrack.cc, SearchBitState is not recursive |
| 15 // on the text. |
| 16 // |
| 17 // SearchBitState is a fast replacement for the NFA code on small |
| 18 // regexps and texts when SearchOnePass cannot be used. |
| 19 |
| 20 #include "re2/prog.h" |
| 21 #include "re2/regexp.h" |
| 22 |
| 23 namespace re2 { |
| 24 |
| 25 struct Job { |
| 26 int id; |
| 27 int arg; |
| 28 const char* p; |
| 29 }; |
| 30 |
| 31 class BitState { |
| 32 public: |
| 33 explicit BitState(Prog* prog); |
| 34 ~BitState(); |
| 35 |
| 36 // The usual Search prototype. |
| 37 // Can only call Search once per BitState. |
| 38 bool Search(const StringPiece& text, const StringPiece& context, |
| 39 bool anchored, bool longest, |
| 40 StringPiece* submatch, int nsubmatch); |
| 41 |
| 42 private: |
| 43 inline bool ShouldVisit(int id, const char* p); |
| 44 void Push(int id, const char* p, int arg); |
| 45 bool GrowStack(); |
| 46 bool TrySearch(int id, const char* p); |
| 47 |
| 48 // Search parameters |
| 49 Prog* prog_; // program being run |
| 50 StringPiece text_; // text being searched |
| 51 StringPiece context_; // greater context of text being searched |
| 52 bool anchored_; // whether search is anchored at text.begin() |
| 53 bool longest_; // whether search wants leftmost-longest match |
| 54 bool endmatch_; // whether match must end at text.end() |
| 55 StringPiece *submatch_; // submatches to fill in |
| 56 int nsubmatch_; // # of submatches to fill in |
| 57 |
| 58 // Search state |
| 59 const char** cap_; // capture registers |
| 60 int ncap_; |
| 61 |
| 62 static const int VisitedBits = 32; |
| 63 uint32 *visited_; // bitmap: (Inst*, char*) pairs already backtracked |
| 64 int nvisited_; // # of words in bitmap |
| 65 |
| 66 Job *job_; // stack of text positions to explore |
| 67 int njob_; |
| 68 int maxjob_; |
| 69 }; |
| 70 |
| 71 BitState::BitState(Prog* prog) |
| 72 : prog_(prog), |
| 73 anchored_(false), |
| 74 longest_(false), |
| 75 endmatch_(false), |
| 76 submatch_(NULL), |
| 77 nsubmatch_(0), |
| 78 cap_(NULL), |
| 79 ncap_(0), |
| 80 visited_(NULL), |
| 81 nvisited_(0), |
| 82 job_(NULL), |
| 83 njob_(0), |
| 84 maxjob_(0) { |
| 85 } |
| 86 |
| 87 BitState::~BitState() { |
| 88 delete[] visited_; |
| 89 delete[] job_; |
| 90 delete[] cap_; |
| 91 } |
| 92 |
| 93 // Should the search visit the pair ip, p? |
| 94 // If so, remember that it was visited so that the next time, |
| 95 // we don't repeat the visit. |
| 96 bool BitState::ShouldVisit(int id, const char* p) { |
| 97 uint n = id * (text_.size() + 1) + (p - text_.begin()); |
| 98 if (visited_[n/VisitedBits] & (1 << (n & (VisitedBits-1)))) |
| 99 return false; |
| 100 visited_[n/VisitedBits] |= 1 << (n & (VisitedBits-1)); |
| 101 return true; |
| 102 } |
| 103 |
| 104 // Grow the stack. |
| 105 bool BitState::GrowStack() { |
| 106 // VLOG(0) << "Reallocate."; |
| 107 maxjob_ *= 2; |
| 108 Job* newjob = new Job[maxjob_]; |
| 109 memmove(newjob, job_, njob_*sizeof job_[0]); |
| 110 delete[] job_; |
| 111 job_ = newjob; |
| 112 if (njob_ >= maxjob_) { |
| 113 LOG(DFATAL) << "Job stack overflow."; |
| 114 return false; |
| 115 } |
| 116 return true; |
| 117 } |
| 118 |
| 119 // Push the triple (id, p, arg) onto the stack, growing it if necessary. |
| 120 void BitState::Push(int id, const char* p, int arg) { |
| 121 if (njob_ >= maxjob_) { |
| 122 if (!GrowStack()) |
| 123 return; |
| 124 } |
| 125 int op = prog_->inst(id)->opcode(); |
| 126 if (op == kInstFail) |
| 127 return; |
| 128 |
| 129 // Only check ShouldVisit when arg == 0. |
| 130 // When arg > 0, we are continuing a previous visit. |
| 131 if (arg == 0 && !ShouldVisit(id, p)) |
| 132 return; |
| 133 |
| 134 Job* j = &job_[njob_++]; |
| 135 j->id = id; |
| 136 j->p = p; |
| 137 j->arg = arg; |
| 138 } |
| 139 |
| 140 // Try a search from instruction id0 in state p0. |
| 141 // Return whether it succeeded. |
| 142 bool BitState::TrySearch(int id0, const char* p0) { |
| 143 bool matched = false; |
| 144 const char* end = text_.end(); |
| 145 njob_ = 0; |
| 146 Push(id0, p0, 0); |
| 147 while (njob_ > 0) { |
| 148 // Pop job off stack. |
| 149 --njob_; |
| 150 int id = job_[njob_].id; |
| 151 const char* p = job_[njob_].p; |
| 152 int arg = job_[njob_].arg; |
| 153 |
| 154 // Optimization: rather than push and pop, |
| 155 // code that is going to Push and continue |
| 156 // the loop simply updates ip, p, and arg |
| 157 // and jumps to CheckAndLoop. We have to |
| 158 // do the ShouldVisit check that Push |
| 159 // would have, but we avoid the stack |
| 160 // manipulation. |
| 161 if (0) { |
| 162 CheckAndLoop: |
| 163 if (!ShouldVisit(id, p)) |
| 164 continue; |
| 165 } |
| 166 |
| 167 // Visit ip, p. |
| 168 // VLOG(0) << "Job: " << ip->id() << " " |
| 169 // << (p - text_.begin()) << " " << arg; |
| 170 Prog::Inst* ip = prog_->inst(id); |
| 171 switch (ip->opcode()) { |
| 172 case kInstFail: |
| 173 default: |
| 174 LOG(DFATAL) << "Unexpected opcode: " << ip->opcode() << " arg " << arg; |
| 175 return false; |
| 176 |
| 177 case kInstAlt: |
| 178 // Cannot just |
| 179 // Push(ip->out1(), p, 0); |
| 180 // Push(ip->out(), p, 0); |
| 181 // If, during the processing of ip->out(), we encounter |
| 182 // ip->out1() via another path, we want to process it then. |
| 183 // Pushing it here will inhibit that. Instead, re-push |
| 184 // ip with arg==1 as a reminder to push ip->out1() later. |
| 185 switch (arg) { |
| 186 case 0: |
| 187 Push(id, p, 1); // come back when we're done |
| 188 id = ip->out(); |
| 189 goto CheckAndLoop; |
| 190 |
| 191 case 1: |
| 192 // Finished ip->out(); try ip->out1(). |
| 193 arg = 0; |
| 194 id = ip->out1(); |
| 195 goto CheckAndLoop; |
| 196 } |
| 197 LOG(DFATAL) << "Bad arg in kInstCapture: " << arg; |
| 198 continue; |
| 199 |
| 200 case kInstAltMatch: |
| 201 // One opcode is byte range; the other leads to match. |
| 202 if (ip->greedy(prog_)) { |
| 203 // out1 is the match |
| 204 Push(ip->out1(), p, 0); |
| 205 id = ip->out1(); |
| 206 p = end; |
| 207 goto CheckAndLoop; |
| 208 } |
| 209 // out is the match - non-greedy |
| 210 Push(ip->out(), end, 0); |
| 211 id = ip->out(); |
| 212 goto CheckAndLoop; |
| 213 |
| 214 case kInstByteRange: { |
| 215 int c = -1; |
| 216 if (p < end) |
| 217 c = *p & 0xFF; |
| 218 if (ip->Matches(c)) { |
| 219 id = ip->out(); |
| 220 p++; |
| 221 goto CheckAndLoop; |
| 222 } |
| 223 continue; |
| 224 } |
| 225 |
| 226 case kInstCapture: |
| 227 switch (arg) { |
| 228 case 0: |
| 229 if (0 <= ip->cap() && ip->cap() < ncap_) { |
| 230 // Capture p to register, but save old value. |
| 231 Push(id, cap_[ip->cap()], 1); // come back when we're done |
| 232 cap_[ip->cap()] = p; |
| 233 } |
| 234 // Continue on. |
| 235 id = ip->out(); |
| 236 goto CheckAndLoop; |
| 237 case 1: |
| 238 // Finished ip->out(); restore the old value. |
| 239 cap_[ip->cap()] = p; |
| 240 continue; |
| 241 } |
| 242 LOG(DFATAL) << "Bad arg in kInstCapture: " << arg; |
| 243 continue; |
| 244 |
| 245 case kInstEmptyWidth: |
| 246 if (ip->empty() & ~Prog::EmptyFlags(context_, p)) |
| 247 continue; |
| 248 id = ip->out(); |
| 249 goto CheckAndLoop; |
| 250 |
| 251 case kInstNop: |
| 252 id = ip->out(); |
| 253 goto CheckAndLoop; |
| 254 |
| 255 case kInstMatch: { |
| 256 if (endmatch_ && p != text_.end()) |
| 257 continue; |
| 258 |
| 259 // VLOG(0) << "Found match."; |
| 260 // We found a match. If the caller doesn't care |
| 261 // where the match is, no point going further. |
| 262 if (nsubmatch_ == 0) |
| 263 return true; |
| 264 |
| 265 // Record best match so far. |
| 266 // Only need to check end point, because this entire |
| 267 // call is only considering one start position. |
| 268 matched = true; |
| 269 cap_[1] = p; |
| 270 if (submatch_[0].data() == NULL || |
| 271 (longest_ && p > submatch_[0].end())) { |
| 272 for (int i = 0; i < nsubmatch_; i++) |
| 273 submatch_[i] = StringPiece(cap_[2*i], cap_[2*i+1] - cap_[2*i]); |
| 274 } |
| 275 |
| 276 // If going for first match, we're done. |
| 277 if (!longest_) |
| 278 return true; |
| 279 |
| 280 // If we used the entire text, no longer match is possible. |
| 281 if (p == text_.end()) |
| 282 return true; |
| 283 |
| 284 // Otherwise, continue on in hope of a longer match. |
| 285 continue; |
| 286 } |
| 287 } |
| 288 } |
| 289 return matched; |
| 290 } |
| 291 |
| 292 // Search text (within context) for prog_. |
| 293 bool BitState::Search(const StringPiece& text, const StringPiece& context, |
| 294 bool anchored, bool longest, |
| 295 StringPiece* submatch, int nsubmatch) { |
| 296 // Search parameters. |
| 297 text_ = text; |
| 298 context_ = context; |
| 299 if (context_.begin() == NULL) |
| 300 context_ = text; |
| 301 if (prog_->anchor_start() && context_.begin() != text.begin()) |
| 302 return false; |
| 303 if (prog_->anchor_end() && context_.end() != text.end()) |
| 304 return false; |
| 305 anchored_ = anchored || prog_->anchor_start(); |
| 306 longest_ = longest || prog_->anchor_end(); |
| 307 endmatch_ = prog_->anchor_end(); |
| 308 submatch_ = submatch; |
| 309 nsubmatch_ = nsubmatch; |
| 310 for (int i = 0; i < nsubmatch_; i++) |
| 311 submatch_[i] = NULL; |
| 312 |
| 313 // Allocate scratch space. |
| 314 nvisited_ = (prog_->size() * (text.size()+1) + VisitedBits-1) / VisitedBits; |
| 315 visited_ = new uint32[nvisited_]; |
| 316 memset(visited_, 0, nvisited_*sizeof visited_[0]); |
| 317 // VLOG(0) << "nvisited_ = " << nvisited_; |
| 318 |
| 319 ncap_ = 2*nsubmatch; |
| 320 if (ncap_ < 2) |
| 321 ncap_ = 2; |
| 322 cap_ = new const char*[ncap_]; |
| 323 memset(cap_, 0, ncap_*sizeof cap_[0]); |
| 324 |
| 325 maxjob_ = 256; |
| 326 job_ = new Job[maxjob_]; |
| 327 |
| 328 // Anchored search must start at text.begin(). |
| 329 if (anchored_) { |
| 330 cap_[0] = text.begin(); |
| 331 return TrySearch(prog_->start(), text.begin()); |
| 332 } |
| 333 |
| 334 // Unanchored search, starting from each possible text position. |
| 335 // Notice that we have to try the empty string at the end of |
| 336 // the text, so the loop condition is p <= text.end(), not p < text.end(). |
| 337 // This looks like it's quadratic in the size of the text, |
| 338 // but we are not clearing visited_ between calls to TrySearch, |
| 339 // so no work is duplicated and it ends up still being linear. |
| 340 for (const char* p = text.begin(); p <= text.end(); p++) { |
| 341 cap_[0] = p; |
| 342 if (TrySearch(prog_->start(), p)) // Match must be leftmost; done. |
| 343 return true; |
| 344 } |
| 345 return false; |
| 346 } |
| 347 |
| 348 // Bit-state search. |
| 349 bool Prog::SearchBitState(const StringPiece& text, |
| 350 const StringPiece& context, |
| 351 Anchor anchor, |
| 352 MatchKind kind, |
| 353 StringPiece* match, |
| 354 int nmatch) { |
| 355 // If full match, we ask for an anchored longest match |
| 356 // and then check that match[0] == text. |
| 357 // So make sure match[0] exists. |
| 358 StringPiece sp0; |
| 359 if (kind == kFullMatch) { |
| 360 anchor = kAnchored; |
| 361 if (nmatch < 1) { |
| 362 match = &sp0; |
| 363 nmatch = 1; |
| 364 } |
| 365 } |
| 366 |
| 367 // Run the search. |
| 368 BitState b(this); |
| 369 bool anchored = anchor == kAnchored; |
| 370 bool longest = kind != kFirstMatch; |
| 371 if (!b.Search(text, context, anchored, longest, match, nmatch)) |
| 372 return false; |
| 373 if (kind == kFullMatch && match[0].end() != text.end()) |
| 374 return false; |
| 375 return true; |
| 376 } |
| 377 |
| 378 } // namespace re2 |
OLD | NEW |